Skip to main content
Log in

Unsteady flows measurements using a calorimetric wall shear stress micro-sensor

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A microscale low power high temperature gradient calorimetric (HTGC) sensor measuring both mean and fluctuating bidirectional wall shear stress is presented. The micromachined sensor is composed of three free-standing \(3\,\upmu \text {m}\times 1\) mm micro-wires mechanically supported using perpendicular micro-bridges. The static and dynamic characterisations were performed in a turbulent boundary layer wind tunnel on a flat plate configuration, and compared to the one obtained with a conventional hot-film probe. The results demonstrated that the calorimetric sensor behaves similarly to the hot-film in constant temperature anemometry with nonetheless lower power consumption and better spatial resolution and temporal response. Additionally, its calorimetric measurement detected the direction of the wall shear stress component orthogonal to the wires, corresponding to the shear stress sign in 2D flows. The calibrated HTGC micro-sensor was then used for unsteady flow separation detection downstream a 2D square rib for \(Re_h= 2.56\times 10^4\). The calorimetric micro-sensor enabled self-correlated measurements and consequently successfully achieved the detection of flow separation and the reattachment point around \(x/h=10.7\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bailey S (2010) Turbulence measurements using a nanoscale thermal anemometry probe. J Fluid Mech 663:160–179

    Article  Google Scholar 

  • Barlian AA, Park S-J, Mukundan V, Pruitt BL (2007) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensor. Sens Actuators A Phys 134:77–87

    Article  Google Scholar 

  • Buder U, Petz R, Kittel M, Nitsche W, Obermeier E (2008) AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sens Actuators A Phys 142(1):130–137

    Article  Google Scholar 

  • Chandrasekaran V, Cain A, Nishida T, CattafestaL N, Sheplak M (2005) Dynamic calibration technique for thermal shear stress sensors with mean flow. Exp Fluids 39:56–65

    Article  Google Scholar 

  • Chandrasekharan V, Sells J, Meloy J, ArnoldD P, Sheplak M (2011) A microscale differential capacitive direct wall-shear-stress sensor. J Microelectromech Syst 20(3):622–635

    Article  Google Scholar 

  • Furjes P, Legradi G, Cs Ducso, Aszodi A, Barsony I (2004) Thermal characterisation of a direction dependent flow sensor. Sens Actuators A Phys 115(2):417–423

    Article  Google Scholar 

  • Ghouila-Houri C, Claudel J, Gerbedoen J-C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2016) High temperature gradient micro-sensor for wall shear stress and flow direction measurements. Appl Phys Lett 109(24):241905

    Article  Google Scholar 

  • Ghouila-Houri C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2017) High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection. Sens Actuators A Phys 266:232–241

    Article  Google Scholar 

  • Ghouila-Houri C, Gallas Q, Garnier E, Viard R, Talbi A, Pernod P (2018) High temperature gradient wall shear stress micro-sensors for flow separation control. In: 2018 flow control conference, AIAA AVIATION Forum, (AIAA 2018-3057)

  • Kuo J, Yu L, Meng E (2012) Micromachined thermal flow sensors a review 2012. Micromachines 3:500–573

    Article  Google Scholar 

  • Leu TS, Yu JM, Miau JJ, Chen SJ (2016) MEMS flexible thermal flow sensors for measurement of unsteady flow above a pitching wind turbine blade. Exp Therm Fluid Sci 77:167–178

    Article  Google Scholar 

  • Liu YZ, Ke F, Sung HJ (2008) Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. J Fluids Struct 24(3):366–381

    Article  Google Scholar 

  • Lofdahl L, Chernoray V, Haasl S, Stemme G, Sen M (2003) Characteristics of a hot-wire microsensor for time-dependent wall shear stress measurements. Exp Fluids 35(3):240–251

    Article  Google Scholar 

  • Lofdahl L, Gad-el-Hak M (1999) MEMS applications in turbulence and flow control. Prog Aerosp Sci 35:101–203

    Article  Google Scholar 

  • Mathis R, Marusic I, CHernyshenko SI, Hutchins N (2013) Estimating wall-shear-stress fluctuations given an outer region input. J Fluid Mech 715:163–180

    Article  MathSciNet  Google Scholar 

  • Nagib H, Chauchan KA, Monkewitz PA (2007) Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philos Trans R Soc 365:755–770

    Article  Google Scholar 

  • Sheplak M, Chandrasekharan V, Cain A, Nishida T, Cattafesta LN (2002) Characterization of a silicon-micromachined thermal shear-stress sensor. AIAA J 40(6):1099–1104

    Article  Google Scholar 

  • Talbi A (2015) A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing. J Micromech Microeng 25(12):125029

    Article  Google Scholar 

  • Vereshchagina E, Tiggelaar RM, Sanders RGP, Wolters RAM, Gardeniers JGE (2015) Low power micro-calorimetric sensors for analysis of gaseous samples. Sens Actuators B Chem 206:772–787

    Article  Google Scholar 

  • Viard R (2013) A robust thermal microstructure for mass flow rate measurement in steady and unsteady flows. J Micromech Microeng 23(6):065016

    Article  Google Scholar 

  • Xu Y, Tai Y-C, Huang A, Ho C-M (2003) IC-integrated flexible shear-stress sensor skin. J Microelectromech Syst 12(5):740–747

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the French National Research Agency (ANR) (Grant no. ANR-14-ASTR-0023-01) in the framework of the ANR ASTRID CAMELOTT project. It is supported by the regional platform CONTRAERO in the framework of the CPER ELSAT 2020 project and RENATECH, the French national nanofabrication network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Ghouila-Houri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghouila-Houri, C., Talbi, A., Viard, R. et al. Unsteady flows measurements using a calorimetric wall shear stress micro-sensor. Exp Fluids 60, 67 (2019). https://doi.org/10.1007/s00348-019-2714-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-019-2714-5

Navigation