Skip to main content
Log in

A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Count data is often modeled using Poisson regression, although this probability model naturally restricts the conditional variance to be equal to the conditional mean (equidispersion property). While overdispersion has been intensively studied, there are few alternative models in the statistical literature for analyzing count data with underdispersion. The primary goal of this paper is to introduce a novel model based on Bernoulli-Poisson convolution for modelling count data that are underdispersed relative to the Poisson distribution. We study the statistical properties of the proposed model, and we provide a useful interpretation of the parameters. We consider a regression structure for both components based on a new parameterization indexed by mean and dispersion parameters. An expectation-maximization (EM) algorithm is proposed for parameter estimation and some diagnostic measures, based on the EM algorithm, are considered. Simulation studies are conducted to evaluate its finite sample performance. Finally, we illustrate the usefulness of the new regression model by an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bonat WH, Jørgensen B, Kokonendji CC, Hinde J, Demétrio CG (2017) Extended Poisson-Tweedie: properties and regression models for count data. Stat Model 18:24–49

    Article  MathSciNet  Google Scholar 

  • Bourguignon M, Gallardo D (2020) Reparameterized inverse gamma regression models with varying precision. Stat Neerl 74:611–627

    Article  MathSciNet  Google Scholar 

  • Bourguignon M, Leao J, Gallardo D (2020) Parametric modal regression with varying precision. Biometr J 62:202–220

    Article  MathSciNet  Google Scholar 

  • Cameron A, Trivedi P (1998) Regression analysis of count data. Econometric society monographs. Cambridge University Press, Cambrige

    Book  Google Scholar 

  • Castillo J, Pérez-Casany M (1998) Weighted poisson distributions for overdispersion and underdispersion situations. Ann Inst Stat Math 50:567–585

    Article  MathSciNet  Google Scholar 

  • Castillo J, Pérez-Casany M (2005) Overdispersed and underdispersed Poisson generalizations. Journal of Statistical Planning and Inference 134:486–500

    Article  MathSciNet  Google Scholar 

  • Consul P, Famoye F (1992) Generalized Poisson regression model. Commun Stat Theory Methods 21:89–109

    Article  Google Scholar 

  • Cox F (1993) Modern parasitology: a textbook of parasitology. Blackwell Science, Oxford

    Book  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B (Methodol) 39:1–22

    MathSciNet  MATH  Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5:236–244

    Google Scholar 

  • Efron B (1986) Double exponential families and their use in generalized linear regression. J Am Stat Assoc 81:709–721

    Article  MathSciNet  Google Scholar 

  • Hardy I (2002) Sex ratios. Concepts and research methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang A (2017) Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. Stat Model 17:359–380

    Article  MathSciNet  Google Scholar 

  • Johnson SG (2018) The NLopt nonlinear-optimization package. https://CRAN.R-project.org/package=nloptr, version 1.2.1

  • King G (1989) Variance specification in event count models: from restrictive assumptions to a generalized estimator. Am J Polit Sci 33:762–784

    Article  Google Scholar 

  • Nelder J, Wedderburn R (1972) Generalized linear models. J R Stat Soc Ser A 135:370–384

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ribeiro EE Jr, Zeviani WM, Bonat WH, Demetrio CG, Hinde J (2020) Reparametrization of COM-Poisson regression models with applications in the analysis of experimental data. Stat Model 20:443–466

    Article  MathSciNet  Google Scholar 

  • Ridout MS, Besbeas P (2004) An empirical model for underdispersed count data. Stat Model 4:77–89

    Article  MathSciNet  Google Scholar 

  • Rigby RA, Stasinopoulos D, Akantziliotou C (2008) A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput Stat Data Anal 53:381–393

    Article  MathSciNet  Google Scholar 

  • Sáez-Castillo A, Conde-Sánchez A (2013) A hyper-Poisson regression model for overdispersed and underdispersed count data. Comput Stat Data Anal 61:148–157

    Article  MathSciNet  Google Scholar 

  • Samaniego FJ (1976) A characterization of convoluted poisson distributions with applications to estimation. J Am Stat Assoc 71:475–479

    Article  MathSciNet  Google Scholar 

  • Sellers KF, Morris DS (2017) Underdispersion models: models that are ‘under the radar’. Commun Stat Theory Methods 46:12075–12086

  • Sellers KF, Shmueli G (2010) A flexible regression model for count data. Ann Appl Stat 4:943–961

  • Sen P, Singer J, Pedroso-de Lima A (2010) From finite sample to asymptotic methods in statistics. Cambridge University Press, New York

    MATH  Google Scholar 

  • Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61:439–447

    MathSciNet  MATH  Google Scholar 

  • Weiß C (2013) Integer-valued autoregressive models for counts showing underdispersion. J Appl Stat 40:1931–1948

    Article  MathSciNet  Google Scholar 

  • Winkelmann R (1995) Duration dependence and dispersion in count-data models. J Busin Econ Stat 13:467–474

    MathSciNet  Google Scholar 

  • Yazici B, Yolacan S (2007) A comparison of various tests of normality. J Stat Comput Simul 77:175–183

    Article  MathSciNet  Google Scholar 

  • Zeviani WM, Ribeiro PJ Jr, Bonat WH, Shimakura SE, Muniz JA (2014) The Gamma-count distribution in the analysis of experimental underdispersed data. J Appl Stat 41:2616–2626

    Article  MathSciNet  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete data models. J R Stat Soc Ser B (Stat Methodol) 63:111–126

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Bourguignon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we provided explicit expression for the terms involved in Eq. (8) when \(g_1\) and \(g_2\) are the logarithmic and logit functions, respectively. The first derivative of the complete log-likelihood in relation to \({{\varvec{\theta }}}\) is given by

$$\begin{aligned}&S_i({{\varvec{\theta }}})=\frac{\partial \ell _c({{\varvec{\theta }}})}{\partial {{\varvec{\theta }}}}=\left( \begin{array}{c} \displaystyle \sum _{i=1}^n {\mathbf {x}}_i^\top (a_i+b_i t_i) \\ \displaystyle \sum _{i=1}^n {\mathbf {z}}_i^\top (c_i+d_i t_i) \end{array} \right) \Rightarrow \text {E}\left( S_i({{\varvec{\theta }}})\mid {{\varvec{D}}}_{obs}; {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}}\right) \\&\quad \quad =\left( \begin{array}{c} \displaystyle \sum _{i=1}^n {\mathbf {x}}_i^\top (a_i+b_i {\widetilde{t}}_i) \\ \displaystyle \sum _{i=1}^n {\mathbf {z}}_i^\top (c_i+d_i {\widetilde{t}}_i) \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} a_i&= \mu _i \left( -1+\frac{y_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}\right. \\&\quad \left. -\frac{1}{2}\sqrt{\frac{1-\phi _i}{\mu _i}}\left\{ -1+\frac{y_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1}{1-\sqrt{\mu _i(1-\phi _i)}}\right\} \right) ,\\ b_i&=\mu _i \left( \frac{1}{2\mu _i}-\frac{1}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}\right. \\&\quad \left. +\frac{1}{2}\sqrt{\frac{1-\phi _i}{\mu _i}}\left\{ \frac{1}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1}{1-\sqrt{\mu _i(1-\phi _i)}}\right\} \right) ,\\ c_i&=\frac{1}{2}\phi _i\sqrt{\mu _i(1-\phi _i)}\left( -1+\frac{y_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1}{1-\sqrt{\mu _i(1-\phi _i)}}\right) , \quad \hbox {and}\\ d_i&=-\frac{1}{2}\phi _i(1-\phi _i)\\&\quad \left( \frac{1}{(1+\phi _i)}+\sqrt{\frac{\mu _i}{1-\phi _i}}\left\{ \frac{1}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1}{1-\sqrt{\mu _i(1-\phi _i)}}\right\} \right) . \end{aligned}$$

On the other hand, as \(\text {E}(T_i^2\mid {{\varvec{D}}}_{obs}; {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}})=\text {E}(T_i\mid {{\varvec{D}}}_{obs}; {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}})={\widetilde{t}}_i\), we have that

$$\begin{aligned}&\text {E}\left( S_i({{\varvec{\theta }}})S_i^\top ({{\varvec{\theta }}})\mid {{\varvec{D}}}_{obs}; {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}}\right) \\&\quad =\left( \begin{array}{cc} a_i^\top a_i+{\widetilde{t}}_i(2a_ib_i^\top +b_ib_i^\top ) &{} a_i c_i^\top +{\widetilde{t}}_i (a_id_i+b_ic_i+b_id_i) \\ \cdot &{} c_i^\top c_i+{\widetilde{t}}_i(2c_id_i^\top +d_id_i^\top ) \\ \end{array} \right) . \end{aligned}$$

Finally, the expected value of the second derivative of the complete log-likelihood in relation to \({{\varvec{\theta }}}\) is given by

$$\begin{aligned} \text {E}\left( B_i({{\varvec{\theta }}})\mid {{\varvec{D}}}_{obs}, {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}}\right)&=\text {E}\left( \frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial {{\varvec{\theta }}}\partial {{\varvec{\theta }}}^\top }\mid {{\varvec{D}}}_{obs}, {{\varvec{\theta }}}=\widehat{{\varvec{\theta }}}\right) \\&=\left( \begin{array}{cc} \displaystyle \sum _{i=1}^n {\mathbf {x}}_i^\top {\mathbf {x}}_iB_{11i} &{} \displaystyle \sum _{i=1}^n {\mathbf {x}}_i^\top {\mathbf {z}}_i B_{12i}\\ \displaystyle \sum _{i=1}^n {\mathbf {z}}_i^\top {\mathbf {x}}_i B_{12i} &{} \displaystyle \sum _{i=1}^n {\mathbf {z}}_i^\top {\mathbf {z}}_i B_{22i} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} B_{11i}&=a_i+b_i {\widetilde{t}}_i+\mu _i^2 \frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \mu _i^2}, \qquad B_{12i}=\mu _i \phi _i(1-\phi _i)\frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \mu _i \partial \phi _i},\\ B_{22i}&=(1-2\phi _i)(c_i+d_i {\widetilde{t}}_i)+\phi _i^2(1-\phi _i)^2\frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \phi _i^2},\\ \frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \mu _i^2}&=-\frac{{\widetilde{t}}_i}{2\mu _i^2}-\frac{(y_i-{\widetilde{t}}_i) \left( 1-\frac{1}{2}\sqrt{\frac{1-\phi _i}{\mu _i}}\right) }{ (\mu _i-\sqrt{\mu _i(1-\phi _i)})^2}\\&\quad +\frac{1}{2}\sqrt{\frac{1-\phi _i}{\mu _i}}\Bigg (\frac{1}{2\mu _i}\bigg \{-1+\frac{y_i-{\widetilde{t}}_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}\\&~~~~~+\frac{1-{\widetilde{t}}_i}{1-\sqrt{\mu _i(1-\phi _i)}}\bigg \} +\frac{(y_i-{\widetilde{t}}_i)\left( 1-\frac{1}{2}\sqrt{\frac{1-\phi _i}{\mu _i}}\right) }{(\mu _i-\sqrt{\mu _i(1-\phi _i)})^2}-\frac{(1-{\widetilde{t}}_i)\sqrt{\frac{1-\phi _i}{\mu _i}}}{(1-\sqrt{\mu _i(1-\phi _i)})^2}\Bigg ),\\ \frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \phi _i^2}&=- \frac{{\widetilde{t}}_i}{2(1-\phi _i)^2}\\&\quad +\frac{1}{4}\sqrt{\frac{\mu _i}{1-\phi _i}}\Bigg (\frac{1}{(1-\phi _i)}\left\{ -1+\frac{y_i-{\widetilde{t}}_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1-{\widetilde{t}}_i}{1-\sqrt{\mu _i(1-\phi _i)}}\right\} \\&~~~~~-\frac{(y_i-{\widetilde{t}}_i)}{(\mu _i-\sqrt{\mu _i(1-\phi _i)})^2}-\frac{(1-{\widetilde{t}}_i)}{(1-\sqrt{\mu _i(1-\phi _i)})^2}\Bigg ), \quad \hbox {and}\\ \frac{\partial ^2 \ell _c({{\varvec{\theta }}})}{\partial \mu _i \partial \phi _i}&=\frac{1}{4\sqrt{\mu _i(1-\phi _i)}}\left\{ -1+\frac{y_i-{\widetilde{t}}_i}{\mu _i-\sqrt{\mu _i(1-\phi _i)}}+\frac{1-{\widetilde{t}}_i}{1-\sqrt{\mu _i(1-\phi _i)}}\right\} \\&~~~~~-\frac{1}{4}\frac{\mu _i}{(1-\phi _i)}\left\{ \frac{(y_i-{\widetilde{t}}_i)}{(\mu _i-\sqrt{\mu _i(1-\phi _i)})^2}+\frac{(1-{\widetilde{t}}_i)}{(1-\sqrt{\mu _i(1-\phi _i)})^2}\right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourguignon, M., Gallardo, D.I. & Medeiros, R.M.R. A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution. Stat Papers 63, 821–848 (2022). https://doi.org/10.1007/s00362-021-01253-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-021-01253-0

Keywords

Navigation