Skip to main content
Log in

Multi-surrogates and multi-points infill strategy-based global optimization method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Surrogate-based global optimization (SBGO) methods are widely used to deal with the computationally expensive black-box optimization problems. In order to reduce the computational source, multiple popular individual surrogates containing polynomial response surface (PRS), radial basis functions (RBF), kriging (KRG) and multiple derived ensemble models are constructed to replace the computationally expensive black-box functions. Moreover, a new multi-points infill strategy is presented to accelerate the optimization. New promising points are located by alternately using a hybrid and adaptive promising sampling (HAPS) method and a multi-start sequential quadratic programming (MSSQP) method. The proposed multi-surrogates and multi-points infill strategy-based global optimization (MSMPIGO) method is examined using eighteen unconstrained optimization problems, six nonlinear constrained engineering problems, and one airfoil design optimization problem. Three basic surrogate PRS, RBF, KRG-based global optimization methods using the similar multi-points infill strategy, PRSMPIGO, RBFMPIGO and KRGMPIGO are both considered as the comparative methods. In comparison with PRSMPIGO, RBFMPIGO, KRGMPIGO and three recently introduced SBGO methods, MSMPIGO shows superior search efficiency and strong robustness in locating the global optima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhosekar A, Ierapetritou M (2018) Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput Chem Eng 108:250–267

    Article  Google Scholar 

  2. Chatterjee T, Chakraborty S, Chowdhury R (2019) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng 26(1):245–274

    Article  MathSciNet  Google Scholar 

  3. Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1–3):50–79

    Article  Google Scholar 

  4. Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions—a survey. Struct Multidiscip Optim 54(1):3–13

    Article  MathSciNet  Google Scholar 

  5. Jin Y (2011) Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol Comput 1(2):61–70

    Article  Google Scholar 

  6. Wang LQ, Shan SQ, Wang GG (2004) Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng Optim 36(4):419–438

    Article  Google Scholar 

  7. Holmstrom K (2008) An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. J Global Optim 41(3):447–464

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong H, Song B, Dong Z et al (2016) Multi-start space reduction (MSSR) surrogate-based global optimization method. Struct Multidiscip Optim 54(4):907–926

    Article  MathSciNet  Google Scholar 

  9. Xiang H, Li Y, Liao H et al (2017) An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers. Struct Multidiscip Optim 55(2):701–713

    Article  Google Scholar 

  10. Zhou Q, Jiang P, Huang X et al (2018) A multi-objective robust optimization approach based on Gaussian process model. Struct Multidiscip Optim 57(1):213–233

    Article  MathSciNet  Google Scholar 

  11. Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294

    Article  Google Scholar 

  12. Goel T, Haftka RT, Shyy W et al (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216

    Article  Google Scholar 

  13. Lee Y, Choi DH (2014) Pointwise ensemble of meta-models using v nearest points cross-validation. Struct Multidiscip Optim 50(3):383–394

    Article  Google Scholar 

  14. Gu J, Li GY, Dong Z (2012) Hybrid and adaptive meta-model-based global optimization. Eng Optim 44(1):87–104

    Article  Google Scholar 

  15. Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Global Optim 56(2):669–689

    Article  MATH  Google Scholar 

  16. Ye P, Pan G (2017) Global optimization method using ensemble of metamodels based on fuzzy clustering for design space reduction. Eng Comput 33(3):573–585

    Article  Google Scholar 

  17. Ye P, Pan G, Dong Z (2018) Ensemble of surrogate based global optimization methods using hierarchical design space reduction. Struct Multidiscip Optim 58(2):537–554

    Article  MathSciNet  Google Scholar 

  18. Habib A, Singh HK, Ray T (2018) A multiple surrogate assisted evolutionary algorithm for optimization involving iterative solvers. Eng Optim 50(9):1625–1644

    Article  MATH  Google Scholar 

  19. Zhang N, Wang P, Dong H et al (2020) Shape optimization for blended-wing-body underwater glider using an advanced multi-surrogate-based high-dimensional model representation method. Eng Optim. https://doi.org/10.1080/0305215X.2019.1694674

    Article  MATH  Google Scholar 

  20. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley-Interscience Press, New York

    MATH  Google Scholar 

  21. Wang GG, Dong Z, Aitchison P (2001) Adaptive response surface method—a global optimization scheme for approximation-based design problems. Eng Optim 33(6):707–733

    Article  Google Scholar 

  22. Ye P, Pan G (2017) Global optimization method using adaptive and parallel ensemble of surrogates for engineering design optimization. Optimization 66(7):1135–1155

    Article  MathSciNet  MATH  Google Scholar 

  23. Dyn N, Levin D, Rippa S (1986) Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J Sci Stat Comput 7(2):639–659

    Article  MATH  Google Scholar 

  24. Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: radial basis functions, versus polynomials. Eur J Oper Res 138(1):142–154

    Article  MATH  Google Scholar 

  25. Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE—a MATLAB kriging toolbox. http://www2.imm.dtu.dk/~hbn/dace/

  26. Martin JD, Simpson TW (2005) Use of Kriging models to approximate deterministic computer models. AIAA J 43(4):853–863

    Article  Google Scholar 

  27. Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557

    Article  MATH  Google Scholar 

  28. Sóbester A, Leary SJ, Keane AJ (2005) On the design of optimization strategies based on global response surface approximation models. J Global Optim 33(1):31–59

    Article  MathSciNet  MATH  Google Scholar 

  29. Ao YY, Chi HQ (2010) An adaptive differential evolution algorithm to solve constrained optimization problems in engineering design. Engineering 2:65–77

    Article  Google Scholar 

  30. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11):1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  31. Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794

    Article  MathSciNet  MATH  Google Scholar 

  32. Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  33. Kulfan BM (2008) Universal parametric geometry representation method. J Aircr 45(1):142–158

    Article  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (Grant No. 61803306), China Postdoctoral Science Foundation (Grant No. 2019M660264), Fundamental Research Funds for the Central Universities (Grant No. 3102021bzb003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: List of test optimization problems

Appendix: List of test optimization problems

  1. (1)

    Six-hump camel-back function (SC) with n = 2

    $$f\left( {\varvec{x}} \right) = 4x_{1}^{2} - 2.1x_{1}^{4} + {{x_{1}^{6} } \mathord{\left/ {\vphantom {{x_{1}^{6} } 3}} \right. \kern-\nulldelimiterspace} 3} + x_{1} x_{2} - 4x_{2}^{2} + 4x_{2}^{4} {\kern 1pt} {\kern 1pt} .$$
    (19)
  2. (2)

    Branin function (BR) with n = 2

    $$\begin{aligned} f\left( {\varvec{x}} \right) =\,& \left[ {x_{2} - 5.1\left( {{{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {2\pi }}} \right. \kern-\nulldelimiterspace} {2\pi }}} \right)^{2} + \left( {{5 \mathord{\left/ {\vphantom {5 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)x_{1} - 6} \right]{\kern 1pt}^{2}\\ & + {10}\left[ {1 - \left( {{1 \mathord{\left/ {\vphantom {1 {8\pi }}} \right. \kern-\nulldelimiterspace} {8\pi }}} \right)} \right]{\text{cos}}x_{1} + 10. \end{aligned}$$
    (20)
  3. (3)

    Generalized polynomial function (GF) with n = 2

    $$\begin{aligned} f\left( {\varvec{x}} \right) = \,& \left( {1.5 - x_{1} \left( {1 - x_{2} } \right)} \right)^{2} + \left( {2.25 - x_{1} \left( {1 - x_{2}^{2} } \right)} \right)^{2}\\ & + \left( {2.625 - x_{1} \left( {1 - x_{2}^{3} } \right)} \right)^{2} . \end{aligned}$$
    (21)
  4. (4)

    Goldstein and price function (GP) with n = 2

    $$\eqalign{ \left( x \right) & = \left[ {1 + {{\left( {{x_1} + {x_2} + 1} \right)}^2}\left( {19 - 14{x_1} + 3x_1^2 - 14{x_2} + 6{x_1}{x_2} + 3x_2^2} \right)} \right] \cr & \quad \times \left[ {30 + {{\left( {2{x_1} - 3{x_2}} \right)}^2}\left( {18 - 32{x_1} + 12x_1^2 + 48{x_2} - 36{x_1}{x_2} + 27x_2^2} \right)} \right] \cr}$$
    (22)
  5. (5)

    Shubert function (SE) with n = 2

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \left( {\sum\limits_{i = 1}^{5} {i{\text{cos}}\left( {\left( {i + 1} \right)x_{1} + i} \right)} } \right)\left( {\sum\limits_{i = 1}^{5} {i{\text{cos}}\left( {\left( {i + 1} \right)x_{2} + i} \right)} } \right).$$
    (23)
  6. (6)

    Banana function (BA) with n = 2

    $$f\left( {\varvec{x}} \right) = 100\left( {x_{2} - x_{1}^{2} } \right){\kern 1pt} {\kern 1pt}^{2} + \left( {1 - x_{1} } \right){\kern 1pt}^{2} .$$
    (24)
  7. (7)

    Himmelblau function (HM) with n = 2

    $$f\left( {\varvec{x}} \right) = \left( {x_{1}^{2} + x_{2} - 11} \right)^{2} + \left( {x_{1} + x_{2}^{2} - 7} \right)^{2} .$$
    (25)
  8. (8)

    Cross-IN-TRAY function (CT) with n = 2

    $$f\left( {\varvec{x}} \right) = - 0.0001\left( {\left| {\sin \left( {x_{1} } \right)\sin \left( {x_{2} } \right)\exp \left( {\left| {100 - \frac{{\sqrt {x_{1}^{2} + x_{2}^{2} } }}{\pi }} \right|} \right)} \right| + 1} \right)^{0.1} .$$
    (26)
  9. (9)

    Zakharov function (ZK) with n = 2

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \sum\limits_{i = 1}^{2} {x_{i}^{2} } + \left( {\sum\limits_{i = 1}^{2} {0.5ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{2} {0.5ix_{i} } } \right)^{4} .$$
    (27)
  10. (10)

    Trid function (TR6 and TR10) with n = 6, 10

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \sum\limits_{i = 1}^{n} {\left( {x_{i} - 1} \right)} {\kern 1pt}^{2} - \sum\limits_{i = 2}^{n} {x_{i} x_{i - 1} } .$$
    (28)
  11. (11)

    Paviani function (PF) with n = 10

    $$f\left( {\varvec{x}} \right) = \sum\limits_{i = 1}^{n} {\left[ {\ln^{2} \left( {x_{i} - 2} \right) + \ln^{2} \left( {10 - x_{i} } \right)} \right]} - \left( {\prod\limits_{i = 1}^{n} {x_{i} } } \right)^{0.2} .$$
    (29)
  12. (12)

    Sum squares function (SF12 and SF15) with n = 12, 15

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \sum\limits_{i = 1}^{n} {ix_{i}^{2} } {\kern 1pt} .$$
    (30)
  13. (13)

    Ellipsoid function (ED12 and ED) with n = 12, 15

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{i} {x_{j}^{2} } } .$$
    (31)
  14. (14)

    A function of 16 variables (F16) with n = 16

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} {\kern 1pt} \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{n} {\alpha_{ij} \left( {x_{i}^{2} + x_{i} + 1} \right)} } \left( {x_{j}^{2} + x_{j} + 1} \right),$$
    (32)
    $${a_{ij}}_{\left( {row1 - 8} \right)} = \left[ \begin{array}{llllllllllllllll} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{array} \right]$$
    $${a_{ij}}_{\left( {row 9 - 16} \right)} = \left[ \begin{array}{llllllllllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right]$$
  15. (15)

    Sphere function (SP) with n = 20

    $$f\left( {\varvec{x}} \right) = {\kern 1pt} \sum\limits_{i = 1}^{n} {x_{i}^{2} } {\kern 1pt} .$$
    (33)
  16. (16)

    Tension/compression spring design (TSD) with n = 3

This problem aims to minimize the weight of a tension/compression subject to constraints on minimum deflection, shear stress and surge frequency, limits on outside diameter and side constraints.

$$\begin{gathered} \min {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f\left( {\varvec{x}} \right) = x_{1}^{2} x_{2} \left( {x_{3} + 2} \right) \hfill \\ s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{1} \left( {\varvec{x}} \right) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71785x_{1}^{4} }} \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{2} \left( {\varvec{x}} \right) = \frac{{4x_{2}^{2} - x_{1} x_{2} }}{{12566x_{1}^{3} \left( {x_{2} - x_{1} } \right)}} + \frac{1}{{5108x_{1}^{2} }} - 1 \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{3} \left( {\varvec{x}} \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{4} \left( {\varvec{x}} \right) = \frac{{x_{1} + x_{2} }}{1.5} - 1 \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.05 \le x_{1} \le 2;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.25 \le x_{2} \le 1.3;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2 \le x_{3} \le 15. \hfill \\ \end{gathered}$$
(34)
  1. (17)

    I-beam design (IBD) with n = 4

This problem aims to minimize the vertical deflection of an I-beam and meanwhile satisfies the cross-section area and stress constraints under given loads.

$$\eqalign{ \min f\left( \varvec{x} \right) & = \frac{{5000}}{{\frac{1}{{12}}{x_3}{{\left( {{x_1} - 2{x_4}} \right)}^3} + \frac{1}{6}{x_2}x_4^3 + 2{x_2}{x_4}{{\left( {\frac{{{x_1} - {x_4}}}{2}} \right)}^2}}} \cr s.t.\,{g_1}\left( \varvec{x} \right) & = 2{x_2}{x_4} + {x_3}\left( {{x_1} - 2{x_4}} \right) - 300 \leq 0 \cr {g_2}\left( \varvec{x} \right) & = \frac{{180000{x_1}}}{{{x_3}{{\left( {{x_1} - 2{x_4}} \right)}^3} + 2{x_2}{x_4}\left( {4x_4^2 + 3{x_1}\left( {{x_1} - 2{x_4}} \right)} \right)}} + \frac{{15000{x_2}}}{{\left( {{x_1} - 2{x_4}} \right)x_3^3 + 2{x_4}x_2^3}} \cr & \quad - 6 \leq 010 \leq {x_1} \leq 80;\;10 \leq {x_2} \leq 50;\;0.9 \leq {x_3},{x_4} \leq 5. \cr}$$
(35)
  1. (18)

    Welded beam design (WBD) with n = 4

This problem aims to minimize the cost and meanwhile meets the constraints on shear stress, bending stress in the beam, buckling load on the bar, end deflection of the beam and side constraints.

$$\eqalign{ & \min f\left( \varvec{x} \right) = 1.10471x_1^2{x_2} + 0.04811{x_3}{x_4}\left( {14 + {x_2}} \right) \cr & s.t. {g_1}\left( \varvec{x} \right) = \tau \left( \varvec{x} \right) - {\tau _{\max }} \leq 0 \cr & {g_2}\left( \varvec{x} \right) = \sigma \left( x \right) - {\sigma _{\max }} \leq 0 \cr & {g_3}\left( \varvec{x} \right) = {x_1} - {x_4} \leq 0 \cr & {g_4}\left( \varvec{x} \right) = 0.10471x_1^2 + 0.04811{x_3}{x_4}\left( {14 + {x_2}} \right) - 5 \leq 0 \cr & {g_5}\left( \varvec{x} \right) = 0.125 - {x_1} \leq 0 \cr & {g_6}\left( \varvec{x} \right) = \delta \left( x \right) - {\delta _{\max }} \leq 0 \cr & {g_7}\left( \varvec{x} \right) = P - {P_c}\left( \varvec{x} \right) \leq 0 \cr & where \cr & \tau \left( \varvec{x} \right) = \sqrt {{{\left( {\tau '} \right)}^2} + 2\tau '\tau ''\frac{{{x_2}}}{{2R}} + {{\left( {\tau ''} \right)}^2}} , \tau ' = \frac{P}{{\sqrt 2 {x_1}{x_2}}}, \tau '' = \frac{{MR}}{J}, \cr & M = P\left( {L + \frac{{{x_2}}}{2}} \right), R = \sqrt {\frac{{x_2^2}}{4} + {{\left( {\frac{{{x_1} + {x_3}}}{2}} \right)}^2}} , J = 2\sqrt 2 {x_1}{x_2}\left( {\frac{{x_2^2}}{{12}} + {{\left( {\frac{{{x_1} + {x_3}}}{2}} \right)}^2}} \right), \cr & \sigma \left( \varvec{x} \right) = \frac{{6PL}}{{x_3^2{x_4}}}, \delta \left( \varvec{x} \right) = \frac{{4P{L^3}}}{{Ex_3^3{x_4}}}, {P_c}\left(\varvec{x} \right) = \frac{{4.013E{x_3}x_4^3}}{{6{L^2}}}\left( {1 - \frac{{{x_3}}}{{2L}}\sqrt {\frac{E}{{4G}}} } \right), \cr & G = 12*{10^6}psi, P = 6000 lb, L = 14 in, {\delta _{\max }} = 0.25 in, E = 30*{10^6}psi, \cr & {\tau _{\max }} = 13600 psi, {\sigma _{\max }} = 30000 psi, 0.1 \leq {x_1}, {x_4} \leq 2; 0.1 \leq {x_2}, {x_3} \leq 10 \cr}$$
(36)
  1. (19)

    Pressure vessel design (PVD) with n = 4

This problem is designed to minimize the fabrication cost covering the cost of materials, forming, and welding of the pressure vessel. Four design variables are thickness of the pressure vessel, thickness of the head, inner radius of the pressure vessel, and length of the vessel.

$$\begin{gathered} \min {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f\left( {\varvec{x}} \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3} \hfill \\ s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{1} \left( {\varvec{x}} \right) = - x_{1} + 0.0193x_{3} \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{2} \left( {\varvec{x}} \right) = - x_{2} + 0.00954x_{3} \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{3} \left( {\varvec{x}} \right) = - \pi x_{3}^{2} x_{4} - {4 \mathord{\left/ {\vphantom {4 {3\pi x_{3}^{3} + }}} \right. \kern-\nulldelimiterspace} {3\pi x_{3}^{3} + }}1296000 \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g_{4} \left( {\varvec{x}} \right) = x_{4} - 240 \le 0 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.0625 \le x_{1} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} x_{2} \le 6.1875;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 10 \le x_{3} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} x_{4} \le 200. \hfill \\ \end{gathered}$$
(37)
  1. (20)

    Himmelblau’ s nonlinear optimization problem (HIM) with n = 5

This problem has five design variables, six nonlinear inequality constraints and ten boundary conditions.

$$\begin{gathered} \min f\left( {\varvec{x}} \right) = 5.3578547x_{3}^{2} + 0.8356891x_{1} x_{5} + 37.293239x_{1} - 40792.141 \hfill \\ s.t. \,g_{1} \left( {\varvec{x}} \right) = 85.334407 + 0.0056858x_{2} x_{5} + 0.00026x_{1} x_{4} - 0.0022053x_{3} x_{5} \hfill \\ g_{2} \left( {\varvec{x}} \right) = 80.51249 + 0.0071317x_{2} x_{5} + 0.0029955x_{1} x_{2} + 0.0022053x_{3}^{2} \hfill \\ g_{3} \left( {\varvec{x}} \right) = 9.300961 + 0.0047026x_{3} x_{5} + 0.0012547x_{1} x_{3} + 0.0019085x_{3} x_{4} \hfill \\ 0 \le g_{1} \left( {\varvec{x}} \right) \le 92, 90 \le g_{2} \left( {\varvec{x}} \right) \le 110, 20 \le g_{3} \left( {\varvec{x}} \right) \le 25 \hfill \\ 78 \le x_{1} \le 102; 33 \le x_{2} \le 45; 27 \le x_{3} , x_{4} , x_{5} \le 45. \hfill \\ \end{gathered}$$
(38)
  1. (21)

    Speed reducer design (SRD) with n = 7

This problem is designed to minimize the total weight of the speed reducer. It has eleven constraints involving the limits on the bending stress of the gear teeth, surface stress and transverse deflections of shafts.

$$\eqalign{ & \min {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f\left( \varvec{x} \right) = 0.7854{x_1}x_2^2\left( {3.3333x_3^2 + 14.9334{x_3} - 43.0934} \right) - 1.508{x_1}\left( {x_6^2 + x_7^2} \right) \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + 7.4777\left( {x_6^3 + x_7^3} \right) + 0.7854\left( {{x_4}x_6^2 + {x_5}x_7^2} \right) \cr & s.t.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_1}\left(\varvec{x} \right) = \frac{{27}}{{{x_1}x_2^2{x_3}}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_6}\left(\varvec{x} \right) = \frac{{{{\left[ {{{\left( {{{745{x_5}} \mathord{\left/ {\vphantom {{745{x_5}} {\left( {{x_2}{x_3}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{x_2}{x_3}} \right)}}} \right)}^2} + 157.5 \times {{10}^6}} \right]}^{0.5}}}}{{85x_7^3}} - 1 \leq 0, \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_2}\left(\varvec{x} \right) = \frac{{397.5}}{{{x_1}x_2^2x_3^2}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_7}\left(\varvec{x} \right) = \frac{{{x_2}{x_3}}}{{40}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_8}\left(\varvec{x} \right) = \frac{{5{x_2}}}{{{x_1}}} - 1 \leq 0 \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_3}\left(\varvec{x} \right) = \frac{{1.93x_4^3}}{{{x_2}{x_3}x_6^4}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_9}\left(\varvec{x} \right) = \frac{{{x_1}}}{{12{x_2}}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_{10}}\left(\varvec{x} \right) = \frac{{1.5{x_6} + 1.9}}{{{x_4}}} - 1 \leq 0 \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_4}\left(\varvec{x} \right) = \frac{{1.93x_5^3}}{{{x_2}{x_3}x_7^4}} - 1 \leq 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_{11}}\left(\varvec{x} \right){\text{ = }}\frac{{1.1{x_7} + 1.9}}{{{x_5}}} - 1 \leq 0 \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {g_5}\left(\varvec{x} \right) = \frac{{{{\left[ {{{\left( {{{745{x_4}} \mathord{\left/ {\vphantom {{745{x_4}} {\left( {{x_2}{x_3}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{x_2}{x_3}} \right)}}} \right)}^2} + 16.9 \times {{10}^6}} \right]}^{0.5}}}}{{110x_6^3}} - 1 \leq 0 \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2.6 \leq {x_1} \leq 3.6;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.7 \leq {x_2} \leq 0.8;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 17 \leq {x_3} \leq 28 \cr & {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 7.3 \leq {x_4},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {x_5} \leq 8.3;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2.9 \leq {x_6} \leq 3.9;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 5 \leq {x_7} \leq 5.5 \cr}.$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Pan, G. Multi-surrogates and multi-points infill strategy-based global optimization method. Engineering with Computers 39, 1617–1636 (2023). https://doi.org/10.1007/s00366-021-01557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01557-7

Keywords

Navigation