Skip to main content
Log in

A hybrid TLNNABC algorithm for reliability optimization and engineering design problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The paper aims to present a new TLNNABC hybrid algorithm to solve reliability and engineering design optimization problems. In this algorithm, the structure of the artificial bee colony (ABC) algorithm has been improved by incorporating the features of the neural network algorithm (NNA) and teaching-learning based optimization (TLBO). In the standard ABC, the onlooker bees apply the same searching method as the employed bees, which causes slow convergence and also restricts its practical application of solving optimization problems. In view of this inadequacy and resulting in a better balance between exploration and exploitation, searching procedures for employed bees and onlooker bees of the conventional ABC are renovated based on NNA and improved TLBO algorithms respectively and a new hybrid algorithm called TLNNABC has been developed in this paper. In TLNNABC, for the employed bee phase, NNA is used to increase the population diversity. However, the improved teaching learning-based optimization is embedded in the onlooker bee phase. In this context, a new search operator is introduced which increases the exploitation capability of the algorithm to operate, and a probabilistic selection strategy, which helps to determine whether to apply the original or the new search operator to construct a new solution. Finally, the performance of the proposed TLNNABC algorithm has been demonstrated by the well-known benchmark problems related to reliability optimization, structural engineering design problems, and 23 unconstrained benchmark functions and finally compared with several existing algorithms. Experimental results show that the proposed algorithm is very effective and achieves superior performance than the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  2. Ben Guedria N (2016) Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl Soft Comput J 40:455–467. https://doi.org/10.1016/j.asoc.2015.10.048

    Article  Google Scholar 

  3. Brajevic I, Tuba M (2013) An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J Intell Manuf 24(4):729–740. https://doi.org/10.1007/s10845-011-0621-6

    Article  Google Scholar 

  4. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29(11):2013–2015. https://doi.org/10.2514/3.10834

    Article  Google Scholar 

  5. Derrac J, Garca S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  6. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  7. Garg H (2015) An approach for solving constrained reliability–redundancy allocation problems using cuckoo search algorithm. Beni-Suef Univ J Basic Appl Sci 4:14–25. https://doi.org/10.1016/j.bjbas.2015.02.003

    Article  Google Scholar 

  8. Garg H (2015) An efficient biogeography-based optimization algorithm for solving reliability optimization problems. Swarm Evol Comput 24:1–10. https://doi.org/10.1016/j.swevo.2015.05.001

    Article  Google Scholar 

  9. Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523. https://doi.org/10.1016/j.ins.2018.11.041

    Article  Google Scholar 

  10. Garg H, Rani M, Sharma SP (2013) An efficient two-phase approach for solving reliability–redundancy allocation problem using artificial bee colony technique. Comput Oper Res 40(12):2961–2969. https://doi.org/10.1016/j.cor.2013.07.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  12. Gen M, Yun YS (2006) Soft computing approach for reliability optimization: state-of-the-art survey. Reliab Eng Syst Saf 91(9):1008–1026. https://doi.org/10.1016/j.ress.2005.11.053

    Article  Google Scholar 

  13. Ghambari S, Rahati A (2018) An improved artificial bee colony algorithm and its application to reliability optimization problems. Appl Soft Comput J 62:736–767. https://doi.org/10.1016/j.asoc.2017.10.040

    Article  Google Scholar 

  14. Gharib MR (2020) Comparison of robust optimal QFT controller with TFC and MFC controller in a multi-input multi-output system. Rep Mech Eng 1(1):151–161. https://doi.org/10.31181/rme200101151g

    Article  Google Scholar 

  15. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  16. Hsieh YC, You PS (2011) An effective immune based two-phase approach for the optimal reliability–redundancy allocation problem. Appl Math Comput 218(4):1297–1307. https://doi.org/10.1016/j.amc.2011.06.012

    Article  MathSciNet  Google Scholar 

  17. Huang F. Zhuo, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  18. Huang CL (2015) A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliab Eng Syst Saf 142:221–230

    Article  Google Scholar 

  19. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29:31–44

    Article  Google Scholar 

  20. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  21. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN95—international conference on neural networks, vol 4, pp 1942–1948

  23. Kim HG, Bae CO, Park DJ (2006) Reliability-redundancy optimization using simulated annealing algorithms. J Qual Maint Eng 12(4):354–363

    Article  Google Scholar 

  24. Kundu T, Garg H (2021) A hybrid ITLHHO algorithm for numerical and engineering optimization problems. Int J Intell Syst. https://doi.org/10.1002/int.22707

    Article  Google Scholar 

  25. Kumar V, Kumar D (2017) An astrophysics—inspired Grey wolf algorithm for numerical optimization and its application to engineering design problems. Adv Eng Softw 112:231–254

    Article  Google Scholar 

  26. Liao TW (2010) Two hybrid differential evolution algorithms for engineering design optimization. Appl Soft Comput J 10(4):1188–1199. https://doi.org/10.1016/j.asoc.2010.05.007

    Article  Google Scholar 

  27. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  28. Liu Y, Qin G (2014) A hybrid TS-DE algorithm for reliability redundancy optimization problem. J Comput. https://doi.org/10.4304/jcp.9.9.2050-2057

    Article  Google Scholar 

  29. Liu Y, Qin G (2015) A DE algorithm combined with Levy flight for reliability redundancy allocation problems. Int J Hybrid Inf Technol 8(5):113–118. https://doi.org/10.14257/ijhit.2015.8.5.12

    Article  Google Scholar 

  30. Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 49(5):1982–2000. https://doi.org/10.1007/s10489-018-1362-4

    Article  Google Scholar 

  31. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  32. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  33. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  34. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  35. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  36. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  37. Mohamed AW (2018) A novel differential evolution algorithm for solving constrained engineering optimization problems. J Intell Manuf 29(3):659–692. https://doi.org/10.1007/s10845-017-1294-6

    Article  Google Scholar 

  38. Mohamed AW, Sabry HZ (2012) Constrained optimization based on modified differential evolution algorithm. Inf Sci 194:171–208. https://doi.org/10.1016/j.ins.2012.01.008

    Article  Google Scholar 

  39. Ouyang HB, Gao LQ, Li S, Kong XY (2015) Improved novel global harmony search with a new relaxation method for reliability optimization problems. Inf Sci 305:14–55. https://doi.org/10.1016/j.ins.2015.01.020

    Article  Google Scholar 

  40. Precup R-E, Preitl S, Petriu E, Bojan-Dragos CA, Szedlak-Stinean AI, Roman RC, Hedrea EL (2020) Model-based fuzzy control results for networked control systems. Rep Mech Eng 1(1):10–25. https://doi.org/10.31181/rme200101010p

    Article  Google Scholar 

  41. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  42. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  43. Sadollah A, Sayyaadi H, Yadav A (2018) A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm. Appl Soft Comput J 71:747–782. https://doi.org/10.1016/j.asoc.2018.07.039

    Article  Google Scholar 

  44. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40(5–6):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  45. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  46. Valian E, Tavakoli S, Mohanna S, Haghi A (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64(1):459–468. https://doi.org/10.1016/j.cie.2012.07.011

    Article  Google Scholar 

  47. Valian E, Valian E (2013) A cuckoo search algorithm by Levy flights for solving reliability redundancy allocation problems. Eng Optim 45(11):1273–1286. https://doi.org/10.1080/0305215X.2012.729055

    Article  MathSciNet  Google Scholar 

  48. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  49. Wu P, Gao L, Zou D, Li S (2011) An improved particle swarm optimization algorithm for reliability problems. ISA Trans 50(1):71–81. https://doi.org/10.1016/j.isatra.2010.08.005

    Article  Google Scholar 

  50. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: 2009 World congress on nature and biologically inspired computing, NABIC 2009—Proceedings, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  51. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29:464–483. https://doi.org/10.1108/02644401211235834

    Article  Google Scholar 

  52. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspir Comput 2(2):78–84. https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  53. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

  54. Yeh WC, Hsieh TJ (2011) Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput Oper Res 38(11):1465–1473. https://doi.org/10.1016/j.cor.2010.10.028

    Article  MathSciNet  Google Scholar 

  55. Yokota T, Gen M, Li YX (1996) Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput Ind Eng 30(4):905–917. https://doi.org/10.1016/0360-8352(96)00041-1

    Article  Google Scholar 

  56. Yu K, Wang X, Wang Z (2016) An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems. J Intell Manuf 27(4):831–843. https://doi.org/10.1007/s10845-014-0918-3

    Article  Google Scholar 

  57. Zhang M, Pan Y, Zhu J, Chen G (2018) ABC-TLBO: a hybrid algorithm based on artificial bee colony and teaching–learning-based optimization. Chinese control conference, CCC, 2018-July, pp 2410–2417. https://doi.org/10.23919/ChiCC.2018.8483829

  58. Zhang Y, Jin Z, Chen Y (2020) Hybrid teaching-learning-based optimization and neural network algorithm for engineering design optimization problems. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.07.007

    Article  Google Scholar 

  59. Zhang Z, Huang H, Huang C, Han B (2019) An improved TLBO with logarithmic spiral and triangular mutation for global optimization. Neural Comput Appl 31(8):4435–4450. https://doi.org/10.1007/s00521-018-3785-6

    Article  Google Scholar 

  60. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173. https://doi.org/10.1016/j.amc.2010.08.049

    Article  MathSciNet  MATH  Google Scholar 

  61. Zou D, Gao L, Wu J, Li S, Li Y (2010) A novel global harmony search algorithm for reliability problems. Comput Ind Eng 58(2):307–316. https://doi.org/10.1016/j.cie.2009.11.003

    Article  Google Scholar 

  62. Zou D, Liu H, Gao L, Li S (2011) A novel modified differential evolution algorithm for constrained optimization problems. Comput Math Appl 61(6):1608–1623. https://doi.org/10.1016/j.camwa.2011.01.029

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 1.1 The welded beam design problem

The objective of this problem is to minimize the fabricating cost of the welded beam subject to constraints on shear stress (\(\tau\)), bending stress in the beam (\(\sigma\)), end deflection of the beam (\(\delta\)), buckling load on the bar (\(P_c\)) and side constraints. In the problem, there are four design variables \(h(x_1), l(x_2), t(x_3)\), and \(b(x_4\)) as shown in Fig. 4a. The problem can be mathematically formulated as follows:

$$\begin{array}{ll} \text {Minimize} & f(x)=1.10471x_1^2 x_2+0.04811x_3 x_4 (14.0+x_2) \\ \\ \text {subject to} & g_1 (x)= \tau (x)-\tau _{\text {max}} \le 0 ; \qquad g_5 (x)=0.125-x_1 \le 0 \\ \\ & {} g_2 (x)= \sigma (x)-\sigma _{\text {max}} \le 0 ; \qquad g_6 (x)=\delta (x)-\delta _{\text {max}} \\ \\ & g_3 (x)=x_1-x_4 \le 0 ; \qquad g_7(x)= P-P_c (x) \le 0 \\ \\ & {} g_4 (x)=0.1047x_1^2+0.04811x_3 x_4 (14.0+x_2 )-5.0 \le 0 \\ \\ \text {where} & {} \tau (x) = \sqrt{(\tau ')^2 +2 \tau ' \tau '' \frac{x_2}{2R}+\tau ''^2}, \ \ \tau ' = \frac{P}{\sqrt{2}x_1x_2}, \ \ \tau ''=\frac{MR}{J}, \ \ M = P\left( L+\frac{x_2}{2}\right) ,\\ \\ & {} R =\sqrt{\frac{x_2^2}{4}+ \left( \frac{x_1+x_3}{2} \right) ^2}, \ \ J = 2 \left\{ \sqrt{2} x_1x_2 \left[ \sqrt{\frac{x_2^2}{12} +\left( \frac{x_1+x_3}{2} \right) ^2}\right] \right\} , \ \ \sigma (x) = \frac{6PL}{x_4x_3^2}, \ \ \delta (x) = \frac{4PL^3}{Ex_4x_3^3}, \\ \\ & {} P_c (x) = \frac{4.103E\sqrt{\frac{x_3^2x_4^6}{36}}}{L^2} \left( 1- \frac{x_3}{2L} \sqrt{\frac{E}{4G}}\right) , \ \ P = 6000\, {\rm lb},\ \ \ L=14in, E =30\times 10^{06} \, {\rm psi}, \\ \\ & {} G= 12\times 10^{06}\, {\rm psi}. \ \ \ \tau _{\text {max}} = 136,000 \, {\rm psi}, \ \ \sigma (x) = 30,000\, {\rm psi}, \ \ \delta _{\text {max}} = 0.25\, {\rm in.} ,\\ \\ & {} 0.1 \le x_1 \le 2.0, \ \ 0.1 \le x_2 \le 10.0, \ \ 0.1 \le x_3 \le 10.0, \ \ 0.1 \le x_4 \le 2.0 \end{array}$$

1.2 1.2 Tension/compression spring design problem

The main objective of this problem is to minimize the weight of the tension/compression spring, subject to shear stress, surge frequency and minimum deflection constraints. The structural diagram of this problem is shown in Fig. 4b. The major design variables for this problem are the wire diameter \(d(x_1)\), the mean coil diameter \(D(x_2)\), and the number of active coils \(P(x_3)\). The mathematical formulation of this problem can be described as follows:

$$\begin{aligned} \begin{array}{ll} \text {Minimize} &{} f(x)=(x_3+2) x_2 x_1^2 \\ \text {subject to} &{} g_1(x) = 1 -\frac{x_2^3x_3}{71785x_1^4}\le 0 \\ &{} g_2(x) = \frac{4x_2^2-x_1 x_2}{12566(x_1^3 x_2-x_1^4)} +\frac{1}{5108x_1^2}-1 \le 0 \\ &{} g_3(x) = 1 -\frac{140.45x_1}{x_2^2x_3}\le 0 \\ &{} g_4(x) = \frac{x_1+x_2}{1.5}-1\le 0 \\ \text {where} &{} 0.05 \le x_1 \le 2.0, \ \ 0.25 \le x_2 \le 1.3, \ \ 2 \le x_3 \le 15.0 \end{array} \end{aligned}$$

1.3 1.3 Pressure vessel design problem

The objective of this problem is to minimize the total cost, including the cost of material, forming, and welding. Figure 4c describes the structure of the pressure vessel problem in which a cylindrical vessel is capped at both ends by hemispherical heads. It is a mixed discrete-continuous constrained optimization problem with four design variables: the thickness of the pressure vessel \(T_s (x_1)\), the thickness of the head \(T_h(x_2)\), the inner radius of the vessel \(R(x_3)\), and the length of the cylindrical component \(L(x_4)\). \(T_s\) and \(T_h\) are the available thicknesses of rolled steel plates, which are integer multiples of 0.0625 in., and R and L are continuous variables. The problem can be mathematically formulated as follows:

$$\begin{aligned} \begin{array}{ll} \text {Minimize} &{} f(x)=0.6224x_1 x_3 x_4+1.7781x_2 x_3^2 +3.1661x_1^2 x_4+19.84x_1^2 x_3 \\ \text {subject to} &{} g_1 (x)=-x_1+0.0193x_3 \le 0 \\ &{} g_2 (x)=-x_2+0.00954x_3 \le 0 \\ &{} g_3 (x)=- \pi x_3^2 x_4- \frac{4}{3} \pi x_3^2+1296000 \le 0 \\ &{} g_4 (x)=x_4-240 \le 0 \\ \text {where} &{} 1 \times 0.0625\le x_1, x_2\le 99 \times 0.0625, \ \ \ 10\le x_3, x_4\le 200 \end{array} \end{aligned}$$

1.4 1.4 Speed reducer design problem

The design of the speed reducer problem is shown in Fig. 4d, which consists of seven decision variables namely, face width (b), module of teeth (m), number of teeth on pinion (z), length of shaft 1 between bearing \((l_1)\), length of shaft 2 between bearing \((l_2)\), diameter of shaft 1 \((d_1)\) and diameter of shaft 2 \((d_2)\). The optimization model by considering the design variables \(X=(b,m,z,l_1,l_2,d_1,d_2) = (x_1,x_2\), \(x_3\), \(x_4\), \(x_5,x_6,x_7)\), is defined as

$$\begin{aligned} \begin{array}{ll} \text {Minimize} &{} f(x)=0.7854x_1 x_2^2 (3.3333x_3^2+14.9334x_3-43.0934) -1.508x_1 (x_6^2+x_7^2 )+7.4777(x_6^3+x_7^3 )+0.7854(x_4 x_6^2+x_5 x_7^2)\\ \text {subject to} &{} g_1 (x) = \frac{27}{x_1 x_2^2 x_3}-1 \le 0; \qquad g_7(x) = \frac{x_2x_3}{40}-1 \le 0 \\ &{} g_2 (x)= \frac{397.5}{x_1 x_2^2 x_3^2}-1 \le 0 ; \qquad g_8(x) = \frac{5x_2}{x_1}-1 \le 0 \\ &{} g_3 (x)= \frac{1.93 x_4^3}{x_2 x_3 x_6^4}-1 \le 0 ; \qquad g_9(x) = \frac{x_1}{12x_2}-1 \le 0 \\ &{} g_4 (x)= \frac{1.93x_5^3}{x_2 x_3x_7^4}-1 \le 0 ; \qquad g_{10}(x) = \frac{1.56x_6+1.9}{x_4}-1 \le 0 \\ &{} g_5 (x)= \frac{\sqrt{(\frac{745x_4}{x_2x_3})^2 +16.9 \times 10^6}}{110x_6^3}-1 \le 0 ; \qquad g_{11}(x) = \frac{1.1x_7+1.9}{x_5}-1 \le 0 \\ &{} g_6 (x)= \frac{\sqrt{(\frac{745x_5}{x_2x_3})^2 +157.5 \times 10^6}}{85x_7^3}-1 \le 0 \\ \text {where} &{} 2.6 \le x_1 \le 3.6, \ \ 0.7 \le x_2 \le 0.8, \ \ 17 \le x_3 \le 28, \ \ 7.3 \le x_4 \le 8.3, 7.3 \le x_5 \le 8.3, \ \ \ 2.9 \le x_6 \le 3.9, \ \ 5.0 \le x_7 \le 5.5 \end{array} \end{aligned}$$

1.5 1.5 The three-bar truss design problem

This design optimization problem was firstly revealed by the author [42]. According to this, it is desired that three bars are placed as shown in Fig. 4e and aim is to minimize the weight of bars. The mathematical formulation of the problem, with decision variables \(X=(A_1, A_2)=(x_1, x_2)\), is stated as

$$\begin{aligned} \begin{array}{ll} \text {Minimize} &{} f(x)=(2\sqrt{2} x_1+x_2 )l \\ \text {subject to} &{} g_1(x) = \frac{\sqrt{2}x_1+x_2}{\sqrt{2}x_1^2+2x_1x_2} p -\sigma \le 0 \\ &{} g_2(x) = \frac{x_2}{\sqrt{2}x_1^2+2x_1x_2} p -\sigma \le 0 \\ &{} g_3(x) = \frac{1}{\sqrt{2}x_2+x_1} p -\sigma \le 0 \\ \text {where} &{} 0 \le x_1 \le 1,\ \ \ 0 \le x_2 \le 1 \end{array} \end{aligned}$$

where \(l =100 \, {\text {cm}}\), \({P} = 2\, {\text {KN}}/{\text {cm}}^{2}\), \(\sigma = 2\, {\text {KN}}/{\text {cm}}^2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, T., Garg, H. A hybrid TLNNABC algorithm for reliability optimization and engineering design problems. Engineering with Computers 38, 5251–5295 (2022). https://doi.org/10.1007/s00366-021-01572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01572-8

Keywords

Navigation