Skip to main content

Advertisement

Log in

Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Berger AL, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  • Berglund BE, Malmer N, Persson T (1991) Landscape-ecological aspects of long-term changes in the Ystad area. In: Berglund, BE (ed) The cultural landscape during 6000 years in southern Sweden—the Ystad Project. Ecol Bull 41:405–424

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gayewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climatic change and Arctic ecosystems I. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res-Atmos 108, No. D19, 8170. doi:10.1029/2002JD002558

  • Black MP, Mooney SD (2006) Holocene fire history from the Greater Blue Mountains World Heritage Area, New South Wales, Australia: the climate, humans and fire nexus. Reg Environ Change 6:41–51

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394

    Article  Google Scholar 

  • Braconnot P, Otto-Bleisner B, Harrison SP, Joussaume S, Peterschmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kagayama M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007). Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial maximum, part 1: experiments and large-scale features. Clim Past 3:261–277

    Article  Google Scholar 

  • Brook EJ, Sowers T, Orchard J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273:1087–1091

    Article  Google Scholar 

  • Burbridge RE, Mayle FE, Killeen TJ (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat Res 61:215–230

    Article  Google Scholar 

  • Bush MB, Colinvaux PA, Wiemann MC, Piperno DR, Liu K-B (1990) Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quat Res 34:330–345

    Article  Google Scholar 

  • Bush MB, De Oliveira PE, Colinvaux PA, Miller MC, Moreno E (2004a) Amazonian paleoecological histories: one hill, three watersheds. Palaeogeogr Palaeoclimatol Palaeoecol 214:359–393

    Google Scholar 

  • Bush MB, Silman MR, Urrego DH (2004b) 48,000 years of climate and forest change from a biodiversity hotspot. Science 303:827–829

    Article  Google Scholar 

  • Carcaillet C, Almquist H, Asnong H, Bradshaw RHW, Carrion JS, Gaillard M-J, Gajewski K, Haas JN, Haberle SG, Hadorn P, Muller SD, Richard PJH, Richoz I, Rosch M, Sanchez Goni MF, von Stedingk H, Stevenson AC, Talon B, Tardy C, Tinner W, Tryterud E, Wick L, Willis KJ (2002) Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49:845–863

    Article  Google Scholar 

  • Carcaillet C, Bouvier M, Fréchette B, Larouche AC, Richard PJH (2001) Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. Holocene 11:467–476

    Article  Google Scholar 

  • Carcaillet C, Richard PJH (2000) Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Clim Dyn 16:549–559

    Article  Google Scholar 

  • Carmona-Moreno C, Belward A, Malingreau J-P, Hartley A, Garcia-Alegre M, Antonovskiy M, Buchshtaber V, Pivovarov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob Change Biol 11:1537–1555

    Article  Google Scholar 

  • Clark JS, Merkt J, Muller H (1989) Post-glacial fire, vegetation, and human history on the northern alpine forelands, southwestern Germany. J Ecol 77:897–925

    Article  Google Scholar 

  • Clark JS, Lynch J, Stocks BJ, Goldammer JG (1998) Relationship between charcoal particles in air and sediments in west-central Siberia. Holocene 8(1):19–29

    Article  Google Scholar 

  • Cofer WR III, Koutzenogii KP, Kokorin A, Ezcurra A (1997) Biomass burning emissions and the atmosphere. In: Clark JS, Cachier H, Goldammer JG, Stocks B (eds) Sediment records of biomass burning and global change. NATO ASI series 1: global environmental change, vol 51. Springer, Berlin, pp.189–206

    Google Scholar 

  • Colinvaux PA, De Oliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 274:85–88

    Article  Google Scholar 

  • Cooke R (1998) Human settlement of Central America and northernmost South America (14,000–8000 BP). Quat Int 49/50:177–190

    Article  Google Scholar 

  • Cook KH, Vizy EK (2006) South American climate during the Last Glacial Maximum: delayed onset of the South American monsoon. J Geophys Res 3:1–21

    Google Scholar 

  • Delarze R, Calderari D, Hainard P (1992) Effects of fire on forest dynamics in southern Switzerland. J Veg Sci 3:55–60

    Article  Google Scholar 

  • Fairbanks RG, Mortlock RA, Chiu T-C, Cao L, Kaplan A, Guilderson TP, Fairbanks TW, Bloom AL (2005) Marine radiocarbon calibration curve spanning 0 to 50,000 years B.P. based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24:1781–1796

    Article  Google Scholar 

  • Finsinger W, Tinner W, van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631

    Article  Google Scholar 

  • Francois L, Kaplan J, Otto D, Roelandt C, Harrison SP, Prentice IC, Warnant P, Ramstein G (2000) Comparison of vegetation distributions and terrestrial carbon budgets reconstructed for the last glacial maximum with several biosphere models. In: Proceedings of the third PMIP workshop

  • Froyd CA (2006) Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records. Holocene 16(2):235–249

    Article  Google Scholar 

  • Gardner JJ, Whitlock C (2001) Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. Holocene 11:541–549

    Article  Google Scholar 

  • Gill AM (1977) Management of fire-prone vegetation for plant species conservation in Australia. Search 8(1–2):20–26

    Google Scholar 

  • Gill AM, Bradstock RA (1995) Extinctions of biota by fires. In: Bradstock RA, Auld TD, Keith DA, Kingsford R, Lunney D, Sivertsen D (eds) Conserving biodiversity: threats and solutions. Surrey Beatty & Sons, Sydney, pp 309–322

    Google Scholar 

  • Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Curr Sci 87(1):54–59

    Google Scholar 

  • Haberle SG, David B (2004) Climates of change: human dimensions of Holocene environmental change in low latitudes PEPII transect. Quat Int 118–119:165–179

    Article  Google Scholar 

  • Haberle SG, Ledru M-P (2001) Correlations among charcoal records of fires from the past 16,000 years in Indonesia, Papua New Guinea, and Central and South America. Quat Res 55:97–104

    Article  Google Scholar 

  • Harrison SP, Dodson J (1993) Climates of Australia and New Guinea since 18,000 yr BP. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, pp 265–293

    Google Scholar 

  • Higuera PE, Peters ME, Brubaker LB, Gavin DG (2007) Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat Sci Rev 26:1790–1809

    Article  Google Scholar 

  • Hope G, Kershaw AP, van der Kaars S, Xiangjun S, Liew P-M, Heusser LE, Takahara H, McGlone M, Miyoshi N, Moss PT (2004) History of vegetation and habitat change in the Austral-Asian region. Quat Int 118–119:103–126

    Article  Google Scholar 

  • Horn S (2007) Late Quaternary lake and swamp sediments: recorders of climate and environment. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources, hazards, vol 1. Taylor & Francis, London, pp 423–441

    Google Scholar 

  • Huang CY, Liew PM, Zhao M, Chang TC, Kuo CM, Chen MT, Wang CH, Zheng LF (1997) Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years. Earth Planet Sci Lett 146:59–72

    Article  Google Scholar 

  • Huber U, Markgraf V, Schäbitz F (2003) Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quat Sci Rev 23:1079–1097

    Article  Google Scholar 

  • Huntley B, Birks HJB (1983) An Atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, London

    Google Scholar 

  • Huntley B (1993) Rapid early-Holocene migration and high abundance of hazel (Corylus avellana L.): alternative hypotheses. In: Chambers FM (eds) Climate change and human impact on the landscape. Chapman & Hall, London, pp 205–215

    Google Scholar 

  • Innes JB, Blackford JJ (2003) The ecology of late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194

    Article  Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Kershaw AP, Penny D, van der Kaars S, Anshari G, Thamotherampili A (2001) Vegetation and climate in lowland southeast Asia at the Last Glacial Maximum. In: Metcalfe I, Smith JMB, Morwood M, Davidson I (eds) Faunal and floral migrations and evolution in SE Asia–Australasia. Balkema, Lisse, pp 227–236

    Google Scholar 

  • Kershaw AP, Nanson GC (1993) The last full glacial cycle in the Australian region. Glob Planet Change 7:1–9

    Article  Google Scholar 

  • Kohfeld KE, Harrison SP (2000) How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quat Sci Rev 19:321–346

    Article  Google Scholar 

  • Kohfeld KE, Harrison SP (2001) DIRTMAP: the geological record of dust. Earth Sci Rev 54:81–114

    Article  Google Scholar 

  • Kutzbach JE, Gallimore R, Harrison SP, Behling P, Selin R, Laarif F (1998) Climate and biome simulations for the past 21,000 years. Quat Sci Rev 17(6–7):473–506

    Article  Google Scholar 

  • Labeyrie L, Cole J, Alverson K, Stocker T (2003) The history of climate dynamics in the Late Quaternary. In: Alverson KD, Bradley RS, Pedersen TF (eds) Paleoclimate, global change and the future. Springer, Berlin, pp 33–61

    Google Scholar 

  • Lagerås P (2000) Järnålderns odlingssystem och landskapets långsiktiga förändring. In: Lagerås, P (ed) Arkeologi och paleoekologi i sydvästra Småland. Riksantikvarieämbetet. Arkeologiska undersökningar Skrifter 34:167–230

  • Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304:1959–1962

    Article  Google Scholar 

  • Liu K-B, Colinvaux PA (1985) Forest changes in the Amazon basin during the last glacial maximum. Nature 318:556–557

    Article  Google Scholar 

  • Liu Z, Harrison SP, Kutzbach JE, Otto-Bleisner B (2004) Global monsoons in the mid-Holocene and oceanic feedback. Clim Dyn 22:157–182

    Article  Google Scholar 

  • Long CJ, Whitlock C, Bartlein P, Millspaugh SH (1998) A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Can J For Res 28:774–787

    Article  Google Scholar 

  • MacDonald GM, Beilman DW, Kremenetski V, Sheng Y, Smith LC, Velichko AA (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:385–388

    Article  Google Scholar 

  • Markgraf V (1993) Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr, Palaeolclimatol, Palaeoecol 102:53–68

    Article  Google Scholar 

  • Markgraf V, Dodson JR, Kershaw PA, McGlone M, Nicholls N (1992) Evolution of late Pleistocene and Holocene climates in the circum South Pacific land areas. Clim Dyn 6:193–211

    Article  Google Scholar 

  • Marlon J, Bartlein P, Whitlock C (2006) Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene 16(8):1059–1071

    Article  Google Scholar 

  • Meyer GA, Wells SG, Jull AJT (1995) Fire and alluvial chronology in Yellowstone National Park: climatic and intrinsic controls on Holocene geomorphic processes. Geol Soc Am Bull 107:1211–1230

    Article  Google Scholar 

  • Millspaugh S, Whitlock C, Bartlein P (2000) Variations in fire frequency and climate over the past 17000 yr in central Yellowstone National Park. Geology 28(3):211–214

    Article  Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Article  Google Scholar 

  • Moreno PI (2000) Climate, fire, and vegetation between about 13,000 and 9200 14C yr BP in the Chilean Lake District. Quat Res 54:81–89

    Article  Google Scholar 

  • Moreno PI, Lowell TV, Jacobson GL, Denton GH (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de La Puntilla (41°S). Geografiska Annaler 81A:285–311

    Article  Google Scholar 

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1°× 1° fire history reconstruction for the 20th century. Glob Change Biol 11:398–420

    Article  Google Scholar 

  • Nanson GC, Cohen TJ, Doyle CJ, Price DM (2003) Alluvial evidence of major late-Quaternary climate and flow-regime changes on the coastal rivers of New South Wales, Australia. In: Gregory KJ, Benito G (eds) Palaeohydrology: understanding global change. Wiley, Chichester

    Google Scholar 

  • Paduano GM, Bush MB, Baker PA, Fritz SC, Seltzer GO (2003) A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeogr Palaeolclimatol Palaeoecol 194:259–279

    Article  Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265:195–201

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Peterson JA, Hope GS, Prentice M, Hantoro W (2002) Mountain environments in New Guinea and the late Glacial Maximum warm seas/cold mountains enigma in the West Pacific warm pool region. In: Kershaw AP, Tapper NJ, David B, Bishop PM, Penny D (eds) Bridging Wallace’s line. Advances in geoecology, vol 34. Catena, Reiskirchen, pp 173–187

    Google Scholar 

  • Pierce JL, Meyer GA, Jull AJT (2004) Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature 432:87–90

    Article  Google Scholar 

  • Power MJ, Whitlock C, Bartlein PJ, Stevens LR (2006) Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75:420–436

    Article  Google Scholar 

  • Prentice IC, Jolly D, BIOME 6000 Participants (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519

    Article  Google Scholar 

  • Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, Smith B, Sykes MT (2007) Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell JG et al (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 175–192

    Chapter  Google Scholar 

  • Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire. Wiley, New York, 769 p

    Google Scholar 

  • Raynaud D, Blunier T, Ono Y, Delmas RJ (2003) The Late Quaternary history of atmospheric trace gases and aerosols: interaction between climate and biogeochemical cycles. In: Alverson KD, Bradley RS, Pedersen TF (eds) Paleoclimate, global change and the future. Springer, Berlin, pp 13–31

    Google Scholar 

  • Ripley B, Maechler M (2006) R: a language and environment for statistical computing. http://www.R-project.org

  • Schaefer JM, Denton GH, Barrell DJA, Ivy-Ochs S, Kubik PW, Andersen BG, Phillips FM, Lowell TV, Schlüchter C (2006) Near-synchronous interhemispheric termination of the Last Glacial Maximum in Mid-Latitudes. Science 312:1510–1513

    Article  Google Scholar 

  • Schäfer-Neth C, Paul A (2003) The Atlantic Ocean at the last glacial maximum: 1. objective mapping of the GLAMAP sea-surface conditions. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: material budget and current systems. Springer, Berlin, pp 531–548

    Google Scholar 

  • Seltzer GO (2001) Later Quaternary glaciation in the tropics: future research directions. Quat Sci Rev 20:1063–1066

    Article  Google Scholar 

  • Smith JA, Seltzer GO, Farber DL, Rodbell DT, Finkel RC (2005) Early local Last Glacial Maximum in the tropical Andes. Science 308:678–681

    Article  Google Scholar 

  • Thevenon F, Bard E, Williamson D, Beaufort L (2004) A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications. Palaeogeogr Palaeoclim Palaeoecol 213:83–99

    Google Scholar 

  • Thevenon F, Williamson D, Vincens A, Taieb M, Merdaci O, Decobert M, Buchet G (2003) A late-Holocene charcoal record from Lake Masoko, SW Tanzania: climatic and anthropologic implications. Holocene 13(5):785–792

    Article  Google Scholar 

  • Tinner W, Conedera M, Ammann B, Gäggeler HW, Gedye S, Jones R, Sägesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8:31–42

    Article  Google Scholar 

  • Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1214–1226

    Article  Google Scholar 

  • Tinner W, Hofstetter S, Zeugin F, Conedera M, Wohlgemuth T, Zimmermann L, Zweifel R (2006) Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps—implications for fire history reconstruction. Holocene 16:287–292

    Article  Google Scholar 

  • Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289

    Article  Google Scholar 

  • Urrego DH, Silman MR, Bush MB (2005) The last glacial maximum: stability and change in an Andean cloud forest. J Quat Sci 20:693–701

    Article  Google Scholar 

  • Van Aardenne JA, Dentener FJ, Oliver JGJ, Klein Goldewijk CGM, Lelieveld J (2001) A 1 × 1 resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15(4):909–928

    Article  Google Scholar 

  • Van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla S, Arellano AF Jr, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina Period. Science 303:73–76

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York, 495 p

    Google Scholar 

  • Williams JW, Shuman BN, Webb T III, Bartlein PJ, Leduc PL (2004) Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol Monogr 74(2):309–334

    Article  Google Scholar 

  • Whitlock C, Bartlein PJ (2004) Holocene fire activity as a record of past environmental change. In: Gillespie AR et al (eds) The Quaternary period in the United States. Elsevier, Amsterdam, pp 479–490

    Google Scholar 

  • Whitlock C, Millspaugh SH (1996) Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 6:7–15

    Article  Google Scholar 

  • Whitlock C, Moreno PI, Bartlein P (2007) Climatic controls of Holocene fire patterns in southern South America. Quat Res 68:28–36

    Article  Google Scholar 

  • Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449:459–462

    Article  Google Scholar 

Download references

Acknowledgments

The data analyses on which this paper is based were made at a workshop of the Palaeofire Working Group of the International Geosphere Biosphere Program (IGBP) Fast Track Initiative on Fire. We thank the IGBP and Quantifying and Understanding the Earth System (QUEST) for providing funding for this workshop. The construction of the charcoal database has been supported by the National Science Foundation (NSF), QUEST funding to the QUEST-Deglaciation Project and by Natural Environmental Research Council (NERC) funding under the Joint RAPID program to the ORMEN project. Most of the data (published and unpublished) included in the compilation has been provided by the co-authors or extracted from publications by those co-authors who are regional coordinators of the Palaeofire Working Group. We also thank the International Multiproxy Paleofire Database (IMPD) for data contributions. The version of the charcoal database (GCD, V1) used for this paper is available from British Atmospheric Data Center (BADC) (http://badc.nerc.ac.uk/home/index.html) and from the Global Palaeofire Working Group (GPWG) website (http://www.bridge.bris.ac.uk/projects/QUEST_IGBP_Global_Palaeofire_WG). Animations showing the change in charcoal abundance at 500-year time steps from the LGM to present are also available on the GPWG website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Power.

Additional information

The readers are requested to refer to the section “List of contributors” for the complete list of author affiliation details.

Appendices

List of contributors

Power, M.J.1,*, Marlon, J.2, Ortiz, N.3, Bartlein, P.J.2, Harrison, S.P.3, Mayle, F.E.1, Ballouche, A.4, Bradshaw, R.H.W.5, Carcaillet, C.6, Cordova, C.7, Mooney, S.8, Moreno, P.I.9, Prentice, I.C.10, Thonicke, K.3, Tinner, W.11, Whitlock, C.12, Zhang, Y.13, Zhao, Y.3, Ali, A.A.14, Anderson, R.S.15, Beer, R.11, Behling, H.16, Briles, C.12, Brown, K.J.17, Brunelle A.18, Bush, M.19, Camill, P.20, Chu, G.Q.21, Clark, J.22, Colombaroli, D.11, Connor, S.23, Daniau, A.-L.24, Daniels, M.25, Dodson, J.26, Doughty, E.27, Edwards, M.E.28, Finsinger, W.11,29, Foster, D.27, Frechette J.30, Gaillard, M.-J.31, Gavin, D.G.2, Gobet, E.11, Haberle, S.32, Hallett, D.J.33, Higuera, P.12, Hope, G.32, Horn, S.34, Inoue, J.35, Kaltenrieder, P.11, Kennedy, L.36, Kong, Z.C.37, Larsen, C.38, Long, C.J.39, Lynch, J.40, Lynch, E.A.41, McGlone, M.42, Meeks, S.43, Mensing, S.44, Meyer, G.30, Minckley, T.45, Mohr, J.46, Nelson, D.M.47, New, J.30, Newnham, R.48, Noti, R.49, Oswald, W.50, Pierce, J.51, Richard, P.J.H.52, Rowe, C.3, Sanchez Goñi, M.F.53, Shuman, B.N.54, Takahara, H.55, Toney, J.56, Turney, C.57, Urrego-Sanchez, D.H.19, Umbanhowar, C.58, Vandergoes, M.59, Vanniere, B.60, Vescovi, E.11, Walsh, M.2, Wang, X.61, Williams, N.62, Wilmshurst, J.42, Zhang, J.H.63

1Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh, UK

2Department of Geography, University of Oregon, Eugene, OR, USA

3BRIDGE, School of Geographical Sciences, University of Bristol, Bristol, UK

4Laboratoire Paysages et Biodiversité, Université d’Angers, Angers Cedex 1, France

5Department of Geography, University of Liverpool, Liverpool, UK

6Centre for Bio-Archaeology & Ecology (UMR5059 CNRS/UM2/EPHE), Montpellier, France

7Department of Geography, Oklahoma State University, Stillwater, OK, USA

8School of BEES, University of New South Wales, Sydney, NSW, Australia

9Facultad de Ciencias, Departamento de Biología, Institute of Ecology and Biodiversity, Ñuñoa, Santiago, Chile

10QUEST, Department of Earth Sciences, University of Bristol, Bristol, UK

11Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH–3013 Bern, Switzerland

12Department of Earth Sciences, Montana State University, Bozeman, MT, USA

13Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

14Chaire industrielle CRSNG-UQAT-UQAM en aménagement forestier durable, Université du Québec en Abitibi-Témiscamingue, Noranda, QC, Canada

15Center for Environmental Science and Education, Northern Arizona University, Flagstaff, AZ, USA

16Department of Palynology and Climate Dynamics, Georg-August University, Göttingen, Germany

17Department of Quaternary Geology, Geological Survey Denmark and Greenland, Copenhagen, Denmark

18Department of Geography, University of Utah, Salt Lake City, UT, USA

19Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA

20Department of Biology, Carlton College, Northfield, MN, USA

21Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

22Department of Biology, Duke University, Durham, NC, USA

23Social and Environmental Enquiry, University of Melbourne, Melbourne, VIC, Australia

24Institut de Préhistoire et Géologie du Quaternaire, Université Bordeaux 1, Talence Cedex, France

25Ecological Restoration Institute, Northern Arizona University, Flagstaff, AR, USA

26Institute for the Environment, Brunel University, Uxbridge, UK

27Harvard University, Harvard Forest, Petersham, MA, USA

28School of Geography, University of Southampton, Southampton, UK

29Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands

30Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA

31School of Pure and Applied Sciences, University of Kalmar, Kalmar, Sweden

32Australian National University, Research School of Pacific and Asian Studies, Canberra, ACT, Australia

33Department of Geography and School of Environmental Studies, Queens University, Kingston, ON, Canada

34Department of Geography, University of Tennessee, Knoxville, TN, USA

35Department of Biology and Geoscience, Graduate School of Science, Osaka City University, Osaka, Japan

36Department of Geography, Virginia Polytechnic and State University, Blacksburg, WV, USA

37Institute of Botany, Chinese Academy of Sciences, Beijing, China

38Department of Geography, University of Buffalo, Buffalo, NY, USA

39Department of Geography and Urban Planning, University of Wisconsin, Oshkosh, WI, USA

40Biology Department, North Central College, Naperville, IL, USA

41Biology Department, Luther College, Decorah, IA, USA

42Manaaki Whenua - Landcare Research, Lincoln, New Zealand

43Department of Anthropology, University of Tennessee, Knoxville, TN, USA

44Department of Geography, University of Reno, Nevada, NV, USA

45Department of Botany, University of Wyoming, Laramie, WY, USA

46College of Forestry, Oregon State University, Corvallis, OR, USA

47Institute for Genomic Biology, University of Illinois, Urbana, IL, USA

48School of Geography, University of Plymouth, Plymouth, Devon, UK

49Institut de Botanique, Université de Neuchâtel, Bern, Switzerland

50Department of Communication Sciences and Disorders, Emerson College, Boston, MA, USA

51Department of Geosciences, Boise State University, Boise, ID, USA

52Département de Géographie, Université de Montréal, Montréal, QC, Canada

53EPHE, UMR-CNRS 5805, EPOC, Université Bordeaux 1, 33405 Talence, France

54Geology and Geophysics, University of Wyoming, Laramie, WY, USA

55Graduate School of Agriculture, Kyoto Prefectual University, Kyoto, Japan

56Department of Geological Sciences, Brown University, Providence, RI, USA

57GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia

58Biology and Environmental Studies, St. Olaf College, Northfield, MN, USA

59GNS Science, Avalon, New Zealand

60LCE CNRS-University of Franche-Comté, Besançon, France

61Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

62Department of Environment and Conservation, University of New South Wales, Sydney, NSW, Australia

63Chinese Academy of Meteorological Science, Beijing, China

Email list

Mitch.Power@ed.ac.uk

jennmarlon@gmail.com

Natalie.Ortiz@Bristol.ac.uk

bartlein@uoregon.edu

Sandy.Harrison@Bristol.ac.uk

Francis.Mayle@ed.ac.uk

aziz.ballouche@unicaen.fr

Richard.Bradshaw@liv.ac.uk

carcaillet@univ-montp2.fr

cordova@okstate.edu

s.mooney@unsw.edu.au

pimoreno@uchile.cl

colin.prentice@bristol.ac.uk

kirsten.thonicke@bristol.ac.uk

willy.tinner@ips.unibe.ch

whitlock@montana.edu

zhangygl@ibcas.ac.cn

Yan.Zhao@bristol.ac.uk

Adam.Ali@uqat.ca

Scott.Anderson@nau.edu

Ruth.Beer@ips.unibe.ch

hermann.behling@uni-bremen.de

cbriles@uoregon.edu

kbr@geus.dk

andrea.brunelle@geog.utah.edu

mbush@fit.edu

pcamill@carleton.edu

chuguoqiang@mail.igcas.ac.cn

jimclark@duke.edu

daniele.colombaroli@ips.unibe.ch

connorse@unimelb.edu.au

al.daniau@ipqq.u-bordeaux1.fr

mark.daniels@nau.edu

john.dodson@ansto.gov.au

doughty@fas.harvard.edu

M.E.Edwards@soton.ac.uk

W.Finsinger@bio.uu.nl

drfoster@fas.harvard.edu

jdfrech@unm.edu

MARIE-JOSE.GAILLARD-LEMDAHL@hik.se

dgavin@uoregon.edu

erika.gobet@ips.unibe.ch

simon.haberle@anu.edu.au

hallettd@post.queensu.ca

philip.higuera@montana.edu

geoffrey.hope@anu.edu.au

shorn@utk.edu

juni@sci.osaka-cu.ac.jp

Petra.Kaltenrieder@ips.unibe.ch

kennedy1@vt.edu

kongzc@ibcas.ac.cn

longco@uwosh.edu

Jalynch@noctrl.edu

lynchbet@luther.edu

mcglonem@landcare.cri.nz

smeeks1@utk.edu

smensing@unr.edu

gmeyer@unm.edu

Minckley@uwyo.edu

jerry.mohr@oregonstate.edu

dmnelson@life.uiuc.edu

jnew@unm.edu

R.Newnham@plymouth.ac.uk

roland.noti@gmx.net

w_wyatt_oswald@emerson.edu

JenPierce@boisestate.edu

Pierre.Richard@UMontreal.ca

Cassandra.Rowe@bristol.ac.uk

mf.sanchezgoni@epoc.u-bordeaux1.fr

bshuman@umn.edu

takahara@kpu.ac.jp

Jaime_Toney@brown.edu

turney@uow.edu.au

durrego@fit.edu

ceumb@stolaf.edu

m.vandergoes@gns.cri.nz

Boris.vanniere@univ-fcomte.fr

elisa.vescovi@ips.unibe.ch

mwalsh2@uoregon.edu

xukingw@163.com

nicola.williams@environment.nsw.gov.au

WilmshurstJ@landcareresearch.co.nz

zhangjh@cams.cma.gov.cn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, M.J., Marlon, J., Ortiz, N. et al. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30, 887–907 (2008). https://doi.org/10.1007/s00382-007-0334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0334-x

Keywords

Navigation