Skip to main content

Advertisement

Log in

Declining summer snowfall in the Arctic: causes, impacts and feedbacks

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent changes in the Arctic hydrological cycle are explored using in situ observations and an improved atmospheric reanalysis data set, ERA-Interim. We document a pronounced decline in summer snowfall over the Arctic Ocean and Canadian Archipelago. The snowfall decline is diagnosed as being almost entirely caused by changes in precipitation form (snow turning to rain) with very little influence of decreases in total precipitation. The proportion of precipitation falling as snow has decreased as a result of lower-atmospheric warming. Statistically, over 99% of the summer snowfall decline is linked to Arctic warming over the past two decades. Based on the reanalysis snowfall data over the ice-covered Arctic Ocean, we derive an estimate for the amount of snow-covered ice. It is estimated that the area of snow-covered ice, and the proportion of sea ice covered by snow, have decreased significantly. We perform a series of sensitivity experiments in which inter-annual changes in snow-covered ice are either unaccounted for, or are parameterized. In the parameterized case, the loss of snow-on-ice results in a substantial decrease in the surface albedo over the Arctic Ocean, that is of comparable magnitude to the decrease in albedo due to the decline in sea ice cover. Accordingly, the solar input to the Arctic Ocean is increased, causing additional surface ice melt. We conclude that the decline in summer snowfall has likely contributed to the thinning of sea ice over recent decades. The results presented provide support for the existence of a positive feedback in association with warming-induced reductions in summer snowfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bekryaev R, Polyakov I, Alexeev V (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906

    Article  Google Scholar 

  • Bretherton C, Widmann M, Dymnikov V, Wallace J, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1900–2009

    Article  Google Scholar 

  • Cullather R, Bromwich D, Serreze M (2000) The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: comparison with observations and previous studies. J Clim 13:923–937

    Article  Google Scholar 

  • Curry J, Schramm J, Ebert E (1995) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • Curry J, Schramm J, Perovich D, Pinto J (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:15,345–15,355

    Google Scholar 

  • Dee D, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135:1830–1841

    Article  Google Scholar 

  • Ebert E, Curry J (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere iteractions. J Geophys Res 98:10,085–10,109

    Article  Google Scholar 

  • Finnis J, Holland M, Serreze M, Cassano J (2007) Response of the northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the community climate system model. J Geophys Res 112:G04S42. doi:10.1029/2006JG000286

  • Forland E, Hanssen-Bauer I (2000) Increased precipitation in the Norwegian Arctic: true or false? Clim Change 46:485–509

    Google Scholar 

  • Francis J, White D, Cassano J, Gutowski W, Hinzman L, Holland M, Steele M, Vorosmarty C (2009) An Arctic hydrological system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J Geophys Res 114: G04019. doi:10.1029/2008JG000902

  • Gillett N, Stone D, Stott P, Nozawa T, Karpecho A, Hegerl G, Wehner M, Jones P (2008) Attribution of polar warming to human influence. Nature Geosci 1:750–754

    Article  Google Scholar 

  • Holland M, Finnis J, Barrett A, Serreze M (2007) Projected changes in Arctic Ocean freshwater budgets. J Geophys Res 112: G04S55. doi:10.1029/2006JG000354

  • Kattsov V, Walsh J, Chapman W, Govorkova V, Pavlova T, Zhang X (2007) Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J Hydrometeor 8:571–589

    Article  Google Scholar 

  • Kaufmann D, Schneider D, McKay N, Ammann C, Bradley R, Briffa K, Miller G, Otto-Bliesner B, Overpeck J, Vinther B, 2k Project Members (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236--1239

    Article  Google Scholar 

  • Landerer F, Dickey J, Gntner A (2010) Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res 115: D23115. doi:10.1029/2010JD014584

  • Ledley T (1985) The sensitivity of a thermodynamic sea ice model with leads to time step size. J Geophys Res 90:2251–2260

    Article  Google Scholar 

  • Ledley T (1991) Snow on sea ice: competing effects in shaping climate. J Geophys Res 96:17,195–17,208

    Article  Google Scholar 

  • Ledley T (1993) Variations in snow on sea ice: a mechanism for producing climate variations. J Geophys Res 98:10,401–10,410

    Article  Google Scholar 

  • Markus T, Stroeve J, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup and melt season length. J Geophys Res 114: C12024. doi:10.1029/2009GJC005436

  • McCabe G, Wolock D (2010) Long-term variability in northern hemisphere snow cover and association with warmer winters. Clim Change 99:141–153

    Article  Google Scholar 

  • McClelland J, Dery S, Peterson B, Holmes R, Wood E (2006) A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys Res Lett 33: L06715. doi:10.1029/2006GL025753

  • Miller G, Alley R, Brigham-Grette J, Fitzpatrick J, Polyak L, Serreze M, White J (2010) Arctic amplification: can the past constrain the future?. Quat Sci Rev 29:1779–1790

    Article  Google Scholar 

  • Min SK, Zhang X, Zweirs F (2008) Human-induced Arctic moistening. Science 320:518–520

    Article  Google Scholar 

  • Perovich D, Grenfell T, Light B, Hobbs P (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107: 8044. doi:10.1029/2000JC000438

  • Perovich D, Light B, Eicken H, Jones K, Runciman K, Nghiem S (2007) Increased solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34: L19505. doi:10.1029/2007GL031480

  • Peterson B, Holmes R, McClelland J, Vorosmarty C, Lammers R, Shiklomanov I, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Peterson B, McClelland J, Curry R, Holmes R, Walsh J, Agaard K (2006) Trajectory shifts in the Arctic and sub-Arctic freshwater cycle. Science 313:1061–1066

    Article  Google Scholar 

  • Polyak L, Alley R, Andrews J, Brigham-Grette J, Cronin T, Darby D, Dyke A, Fitzpatrick J, Funder S, Holland M, Jennings A, Miller G, O’Regan M, Savelle J, Serreze M, John K, White J, Wolff E (2010) History of sea ice in the Arctic. Quat Sci Rev 29:1757–1778

    Article  Google Scholar 

  • Rawlins M et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737

    Article  Google Scholar 

  • Rawlins M, Ye H, Yang D, Shiklomanov A, McDonald K (2009) Divergence in seasonal hydrology across northern Eurasia: Emerging trends and water cycle linkages. J Geophys Res 114: D18119. doi:10.1029/2009JD011747

  • Screen J, Simmonds I (2010a) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Google Scholar 

  • Screen J, Simmonds I (2010b) Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys Res Letts 37: L16707. doi:10.1029/2010GL044136

  • Screen J, Simmonds I (2011) Erroneous Arctic temperature trends in the ERA-40 reanalysis: a closer look. J Clim 24:2620–2627

    Article  Google Scholar 

  • Screen J, Simmonds I, Keay K (2011) Dramatic inter-annual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J Geophys Res. doi:10.1029/2011JD015847 (in press)

  • Serreze M, Barrett A (2008) The summer cyclone maximum over the central Arctic Ocean. J Clim 21:1048–1065

    Article  Google Scholar 

  • Serreze M, Francis J (2006) The Arctic amplification debate. Clim Change 76:241–264

    Article  Google Scholar 

  • Serreze M, Hurst C (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Clim 13:182–201

    Article  Google Scholar 

  • Serreze M, Holland M, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    Article  Google Scholar 

  • Serreze M, Barrett A, Stroeve J, Kindig D, Holland M (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Simmonds I, Keay K (2009) Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys Res Letts 36: L19715. doi:10.1029/2009GL039810

  • Simmonds I, Burke C, Keay K (2008) Arctic climate change as manifest in cyclone behavior. J Clim 21:5777–5796

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35

    Google Scholar 

  • Simmons A, Willett K, Jones P, Thorne P, Dee D (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115: D01110. doi:10.1029/2009JD012442

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignot M, Miller H (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Stroeve J, Holland M, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Letts 34: L09501. doi:10.1029/2007GL029703

  • Symon C, Arris L, Heal B (2004) Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18

    Google Scholar 

  • Warren S, Rigor I, Untersteiner N, Radionov V, Bryazgin N, Aleksandrov Y, Colony R (1999) Snow depth on Arctic sea ice. J Clim 12:1814–1829

    Article  Google Scholar 

  • White D, Hinzman L, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski W, Holland M, Holmes R, Huntington H, Kane D, Kliskey A, Lee C, McClelland J, Petersen B, Rupp T, Straneo F, Steele M, Woodgate R, Yang D, Yoshokawa K, Zhang T (2007) The Arctic freshwater system: changes and impacts. J Geophys Res 112: G02S54. doi:10.1029/2006JG000353

  • Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophys Res Letts 32: L02703. doi:10.1029/2004GL021570

Download references

Acknowledgments

We thank Environment Canada and the ECMWF for making their respective datasets readily available on-line, and the reviewers for their insighful comments that improved the clarity of the manuscript. Parts of this research were supported by funding from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Screen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Screen, J.A., Simmonds, I. Declining summer snowfall in the Arctic: causes, impacts and feedbacks. Clim Dyn 38, 2243–2256 (2012). https://doi.org/10.1007/s00382-011-1105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1105-2

Keywords

Navigation