Skip to main content

Advertisement

Log in

The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The South Pacific Convergence Zone (SPCZ) is evaluated in historical simulations from 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and compared with previous generation CMIP3 models. A subset of 24 CMIP5 models are able to simulate a distinct SPCZ in the December to February (DJF) austral summer, although the position of the SPCZ in these models is too zonal compared with observations. The spatial pattern of SPCZ precipitation is improved in CMIP5 models relative to CMIP3 models, although the spurious double ITCZ precipitation band in the eastern Pacific is intensified in many CMIP5 models. All CMIP5 models examined capture some interannual variability of SPCZ latitude, and 19 models simulate a realistic correlation with El Niño–Southern Oscillation. In simulations of the twenty-first century under the RCP8.5 emission scenario, no consistent shift in the mean position of the DJF SPCZ is identified. Several models simulate significant shifts northward, and a similar number of models simulate significant southward shifts. The majority of CMIP5 models simulate an increase in mean DJF SPCZ precipitation, and there is an intensification of the eastern Pacific double ITCZ precipitation band in many models. Most models simulate regions of increased precipitation in the western part of the SPCZ and near the equator, and regions of decreased precipitation at the eastern edge of the SPCZ. Decomposition of SPCZ precipitation changes into dynamic and thermodynamic components reveals predominantly increased precipitation due to thermodynamic changes, while dynamic changes lead to regions of both positive and negative precipitation anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Australian Bureau of Meteorology and CSIRO (2011) Climate change in the pacific: scientific assessment and new research. Volume 1: regional overview. CSIRO Publishing, Melbourne

    Google Scholar 

  • Bellucci A, Gualdi S, Navarra A (2010) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 23:1127–1145

    Article  Google Scholar 

  • Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86

    Article  Google Scholar 

  • Brown JR, Power SB, Delage FP, Colman RA, Moise AF, Murphy BF (2011) Evaluation of the South Pacific Convergence Zone in IPCC AR4 climate model simulations of the 20th century. J Clim 24:1565–1582

    Article  Google Scholar 

  • Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton, P Zhang X, Ganachaud A, Murphy B, Wijffels SE (2012) Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Clim Chang (in press). doi:10.1007/s10584-012-0603-5

  • Brown JR, Moise AF, Delage FP (2012) Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19. doi:10.1007/s00382-011-1192-0

    Article  Google Scholar 

  • Cai W, Lengaigne M, Borlace S, Collins M, Cowan T, McPhaden MJ, Timmermann A, Power S, Brown JR, Menkes C, Ngari A, Vincent EM, Widlansky MJ (2012) More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488:365–369. doi:10.1038/nature11358

    Article  Google Scholar 

  • Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • de Szoeke SP, Xie S-P (2008) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 21:2573–2590

    Article  Google Scholar 

  • Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:L17706. doi:10.1029/2005GL023272

    Article  Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullen AB (2002) Relative influence of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29:1643. doi:10.1029/2001GL014201

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Jourdain NC, Marchesiello P, Menkes CE, Lefèvre J, Vincent EM, Lengaigne M, Chauvin F (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24:3–25. doi:10.1175/2010JCLI3559.1

    Article  Google Scholar 

  • Kiladis GN, van Loon H (1988) The Southern Oscillation. Part VII: meteorological anomalies over the Indian and Pacific Ocean sectors associated with extremes of the Oscillation. Mon Weather Rev 116:120–136

    Article  Google Scholar 

  • Kiladis GN, von Storch H, van Loon H (1989) Origin of the South Pacific Convergence Zone. J Clim 2:1185–1195

    Article  Google Scholar 

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Lintner BR, Neelin JD (2008) Eastern margin variability of the South Pacific Convergence Zone. Geophys Res Lett 35:L16701. doi:10.1029/2008GL034298

    Article  Google Scholar 

  • Matthews AJ (2012) A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Q J R Meteorol Soc. doi:10.1002/qj.1870

    Google Scholar 

  • Meehl GA (1987) The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon Weather Rev 115:27–50

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Marchesiello P, Jourdain NC, Vincent EM, Lefèvre J, Chauvin F, Royer J (2012) Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim Dyn 38:301–321. doi:10.1007/s00382-011-1126-x

    Article  Google Scholar 

  • Moise AF, Colman RA, Brown JR (2012) Behind uncertainties in projections of Australian tropical climate: analysis of 19 CMIP3 models. J Geophys Res 117:D10103. doi:10.1029/2011JD017365

    Article  Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Power SB, Schiller A, Cambers G, Jones D, Hennessy K (2011) The pacific climate change science program. Bull Am Meteorol Soc 92:1409–1411. doi:10.1175/BAMS-D-10-05001.1

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity estimates. Nat Clim Chang 2:248–253. doi:10.1038/nclimate1385

    Article  Google Scholar 

  • Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific Oscillation and South Pacific Climate. Int J Clim 21:1705–1721

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372

    Article  Google Scholar 

  • Streten N (1973) Some characteristics of satellite-observed bands of persistent cloudiness over the Southern Hemisphere. Mon Weather Rev 6:486–495

    Article  Google Scholar 

  • Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J Clim 20:3434–3450

    Article  Google Scholar 

  • Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653

    Article  Google Scholar 

  • van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vincent DG (1994) The South Pacific Convergence Zone (SPCZ): a review. Mon Weather Rev 122:1949–1970

    Article  Google Scholar 

  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896. doi:10.1007/s00382-009-0716-3

    Article  Google Scholar 

  • Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific Convergence Zone. Clim Dyn 36:561–578. doi:10.1007/s00382-0871-6

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Zhang X, Lin W, Zhang M (2007) Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean–atmosphere general circulation models. J Geophys Res 112:D12102. doi:10.1029/2006JD007878

    Article  Google Scholar 

Download references

Acknowledgments

The research discussed in this paper was conducted with the support of the Pacific Australia Climate Change Science and Adaptation Planning Program, a program supported by AusAID, in collaboration with the Department of Climate Change and Energy Efficiency, and delivered by the Bureau of Meteorology and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). We thank Scott Power, Brad Murphy and Ian Smith for useful comments on the manuscript. We also thank two anonymous reviewers. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine R. Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J.R., Moise, A.F. & Colman, R.A. The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim Dyn 41, 2179–2197 (2013). https://doi.org/10.1007/s00382-012-1591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1591-x

Keywords

Navigation