Skip to main content

Advertisement

Log in

Reconstruction of transports through the Strait of Gibraltar from limited observations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observing the water transports through the Strait of Gibraltar is a difficult task. Here we present a methodology aimed to obtain the inflow, outflow and net transport of water from the limited set of available observations, currently consisting of an upward looking ADCP deployed at Espartel sill, two tide gauges located at each side of the Strait and radars monitoring the surface velocities. More precisely, we reconstruct the velocity field over a vertical section across the Strait using a reduced order optimal interpolation technique fed with the spatial covariance patterns deduced from high resolution numerical simulations. As a first step we carry out some sensitivity experiments with synthetic data that demonstrate the high potential of the approach. The reconstruction methodology can reproduce very satisfactorily the variability of the transports with estimated correlations for the inflow, outflow and net over 0.9 in all the cases and estimated RMS errors of 0.03, 0.08 and 0.05 Sv, respectively. However, we have also found that the reconstruction is sensible to bias problems, mostly due to the sensitivity of the method to the differences between the statistics of the actual and modeled velocity profiles. The sensitivity experiments have been used to tune the parameters of the method and a reconstruction of actual monthly transports has been performed for the period 2004–2010 along with an estimate of the associated uncertainty. This reconstruction provides for the first time a multiannual time series of the inflow and the net transports solely based on in situ observations. Therefore it can be used as an independent estimate for the validation of numerical models and surface freshwater fluxes in the Mediterranean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Álvarez Fanjul E, Gómez BP, Sánchez Arévalo IR (2001) Nivmar: a storm surge forecasting system for the Spanish waters. Sci Mar 65:145–154. doi:10.3989/scimar.2001.65s1145

    Article  Google Scholar 

  • Armi L, Farmer DM (1988) The flow of Mediterranean water through the Strait of Gibraltar. Prog Oceanogr 21:1–105

    Article  Google Scholar 

  • Boutov D, Peliz A, Miranda PMA, Soares PMM, Cardoso RM (2014) Inter-annual variability and long term predictability of exchanges through the Strait of Gibraltar. Glob Planet Change 114:23–37. doi:10.1016/j.gloplacha.2013.12.009

    Article  Google Scholar 

  • Bryden H, Candela J, Kinder T (1994) Exchange through the Strait of Gibraltar. Prog Oceanogr 33(3):201–248

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2014) On the ability of global sea level reconstructions to determine trends and variability. J Geophys Res Oceans 119:1572–1592. doi:10.1002/2013JC009298

    Article  Google Scholar 

  • Candela J (2001) Mediterranean water and global circulation. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic, San Diego, pp 419–429

    Google Scholar 

  • Candela J, Winant C, Ruiz A (1990) Tides in the Strait of Gibraltar. J Geophys Res 95(C5):7313–7335

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys Res Lett 30:1275. doi:10.1029/2002GL016473

    Article  Google Scholar 

  • Criado-Aldeanueva J, Soto-Navarro FJ, García-Lafuente J (2012) Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: budgets and exchange through the Strait of Gibraltar. Int J Climatol 32:286–302. doi:10.1002/joc.2268

    Article  Google Scholar 

  • García-Lafuente J, Vargas J, Plaza F, Sarhan T, Candela J, Bascheck B (2000) Tide at the eastern section of the Strait of Gibraltar. J Geophys Res 105(C6):14197–14213

    Article  Google Scholar 

  • García-Lafuente J, Alvarez-Fanjul E, Vargas J, Ratsimandresy A (2002) Subinertial variability through the Strait of Gibraltar. J Geophys Res 107(C10):3168. doi:10.1029/2001JC001104

    Article  Google Scholar 

  • Harzallah A, Alioua M, Li L (2014) Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model. Tellus A 66:23871. doi:10.3402/tellusa.v66.23871

    Article  Google Scholar 

  • Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011

    Article  Google Scholar 

  • Hughes CW, Bingham RJ, Roussenov V, Williams J, Woodworth PL (2015) The effect of Mediterranean exchange flow on European time mean sea level. Geophys Res Lett 42:466–474. doi:10.1002/2014GL062654

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299

    Article  Google Scholar 

  • Jordà G, Gomis D (2013a) Reliability of the steric and mass components of Mediterranean Sea level as estimated from hydrographic gridded products. Geophys Res Lett 40:3655–3660. doi:10.1002/grl.50718

    Article  Google Scholar 

  • Jordà G, Gomis D (2013b) On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J Geophys Res Oceans 118:953–963. doi:10.1002/jgrc.20060

    Article  Google Scholar 

  • Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J Geophys Res 102:27835–27860

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(C9):18567–18589. doi:10.1029/97JC01736

    Article  Google Scholar 

  • Kaplan A, Kushnir Y, Cane MA (2000) Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J Clim 13:2987–3002

    Article  Google Scholar 

  • Krinner G, Viovy N, de-Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice C (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Change Biol 19:1015–1048

    Google Scholar 

  • Lorente P, Soto-Navarro J, Alvarez Fanjul E, Piedracoba S (2014) Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar. J Oper Oceanogr 7(2):59–73

    Article  Google Scholar 

  • Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80(3–4):199–217

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102(C3):5733–5752. doi:10.1029/96JC02776

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766. doi:10.1029/96JC02775

    Article  Google Scholar 

  • Ngo-Duc T, Laval K, Ramillien G, Polcher J, Cazenave A (2006) Validation of the land water storage simulated by ORCHIDEE with the GRACE data, role of the routing scheme. Water Resour Res 43(4):W04427. doi:10.1029/2006WR004941

    Google Scholar 

  • Ross T, Garrett C, Le Traon PY (2000) Western Mediterranean Sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27(18):2949–2952. doi:10.1029/2000GL011653

    Article  Google Scholar 

  • Sammartino S, Garcia-Lafuente J, Sanchez-Garrido JC, De los Santos FJ, Álvarez-Fanjul E, Naranjo C, Bruno M, Calero C (2014) A numerical model analysis of the tidal flows in the Bay of Algeciras, Strait of Gibraltar. Cont Shelf Res 72:34–46. doi:10.1016/j.csr.2013.11.002

    Article  Google Scholar 

  • Sanchez-Garrido JC, Garcia-Lafuente J, Alvarez-Fanjul E, Sotillo M, de-los-Santos FJ (2013) What does cause the collapse of the Western Alboran Gyre? results of an operational ocean model. Prog Oceanogr 116:142–153. doi:10.1016/j.pocean.2013.07.002

    Article  Google Scholar 

  • Sanchez-Roman A, Sannino G, Garcia-Lafuente J, Carillo A, Criado-Aldeanueva F (2009) Transport estimates at the western section of the Strait of Gibraltar: a combined experimental and numerical modeling study. J Geophys Res 114:C06002. doi:10.1029/2008JC005023

    Article  Google Scholar 

  • Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff F, Déqué M, Decharme B (2014) A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A 66:23967. doi:10.3402/tellusa.v66.23967

    Article  Google Scholar 

  • Sotillo MG, Cailleau S, Lorente P, Levier B, Aznar R, Reffray G, Amo-Baladrón A, Chanut J, Benkiran M, Alvarez-Fanjul E (2015) The MyOcean IBI ocean forecast and reanalysis systems: operational products and roadmap to the future Copernicus service. J Oper Oceanogr 8(1):63–79. doi:10.1080/1755876X.2015.1014663

    Article  Google Scholar 

  • Soto-Navarro J, Criado-Aldeanueva F, García-Lafuente J, Sánchez-Román A (2010) Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J Geophys Res 115:C10023. doi:10.1029/2010JC006302

    Article  Google Scholar 

  • Stanev EV, Peneva EL (2002) Regional sea level response to global climatic change: Black Sea examples. Glob Planet Change 32:33–47

    Article  Google Scholar 

  • Tsimplis MN, Bryden HL (2000) Estimation of the transport through the Strait of Gibraltar. Deep Sea Res Part I 47:2219–2242

    Article  Google Scholar 

  • Vargas J, García-Lafuente J, Candela J, Sanchez A (2006) Fortnightly and monthly variability of the exchange through the Strait of Gibraltar. Prog Oceanogr 70(2–4):466–485

    Article  Google Scholar 

  • Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour Res 50:7505–7514. doi:10.1002/2014WR015638

    Article  Google Scholar 

  • Woodworth PL, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coast Res 19:287–295

    Google Scholar 

Download references

Acknowledgments

G. Jordà acknowledges a Ramón y Cajal contract (RYC-2013-14714) funded by the Spanish Ministry of Economy and the Regional Government of the Balearic Islands; he also acknowledges a post-doctoral Grant Funded by the Regional Government of the Balearic Islands and the European Social Fund. A. Sánchez-Román acknowledges a Juan de la Cierva contract (JCI-2011-10196) funded by the Spanish Ministry of Economy and Competitiveness. The authors thank J. Polcher for the river runoff datasets, the Permanent Service for Mean Sea Level (www.psmsl.org) for making available the tide gauge data and J. García-Lafuente for the ADCP data of the Espartel monitoring station, which were collected in the frame of the Spanish Funded projects INGRES (REN2003-01608/MAR), INGRES2 (CTM2006-02326/MAR), INGRES3 (CTM2010-21229-C02-01/MAR) and CTM2009-05810-E/MAR. We also thank Diego Fernandez and the European Space Agency for partially funding this study under the project « ESA WACMOS Mediterranean » (No. 4000114770/15/I-SBo). The reconstructed transports and the indirect estimate of the net transport presented here are available at http://marine-climate.uib.es.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jordà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordà, G., Sánchez-Román, A. & Gomis, D. Reconstruction of transports through the Strait of Gibraltar from limited observations. Clim Dyn 48, 851–865 (2017). https://doi.org/10.1007/s00382-016-3113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3113-8

Keywords

Navigation