Skip to main content

Advertisement

Log in

Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Multi-model ensembles (MMEs) are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single-model ensembles. Previous works suggested that the potential benefit that can be expected by using a MME amplifies with the increase of the independence of the contributing Seasonal Prediction Systems. In this work we combine the two MME Seasonal Prediction Systems (SPSs) independently developed by the European (ENSEMBLES) and by the Asian-Pacific (APCC/CliPAS) communities. To this aim, all the possible multi-model combinations obtained by putting together the 5 models from ENSEMBLES and the 11 models from APCC/CliPAS have been evaluated. The grand ENSEMBLES-APCC/CliPAS MME enhances significantly the skill in predicting 2m temperature and precipitation compared to previous estimates from the contributing MMEs. Our results show that, in general, the better combinations of SPSs are obtained by mixing ENSEMBLES and APCC/CliPAS models and that only a limited number of SPSs is required to obtain the maximum performance. The number and selection of models that perform better is usually different depending on the region/phenomenon under consideration so that all models are useful in some cases. It is shown that the incremental performance contribution tends to be higher when adding one model from ENSEMBLES to APCC/CliPAS MMEs and vice versa, confirming that the benefit of using MMEs amplifies with the increase of the independence the contributing models. To verify the above results for a real world application, the Grand ENSEMBLES-APCC/CliPAS MME is used to predict retrospective energy demand over Italy as provided by TERNA (Italian Transmission System Operator) for the period 1990–2007. The results demonstrate the useful application of MME seasonal predictions for energy demand forecasting over Italy. It is shown a significant enhancement of the potential economic value of forecasting energy demand when using the better combinations from the Grand MME by comparison to the maximum value obtained from the better combinations of each of the two contributing MMEs. The above results demonstrate for the first time the potential of the Grand MME to significantly contribute in obtaining useful predictions at the seasonal time-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (gpcp) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Ahn J-B, Kim H-J (2014) Improvement of 1-month lead predictability of the wintertime ao using a realistically varying solar constant for a cgcm. Meteorol Appl 21(2):415–418. doi:10.1002/met.1372

    Article  Google Scholar 

  • Alessandri A, Borrelli A, Masina S, Cherchi A, Gualdi S, Navarra A, Di Pietro P, Carril AF (2010) The ingv-cmcc seasonal prediction system: improved ocean initial conditions. Mon Weather Rev 138(7):2930–2952

    Article  Google Scholar 

  • Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011a) Evaluation of probabilistic quality and value of the ENSEMBLES multi-model seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139(2):581–607. doi:10.1175/2010MWR3417.1

    Article  Google Scholar 

  • Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011b) Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139(2):581–607. doi:10.1175/2010MWR3417.1

    Article  Google Scholar 

  • Balmaseda M, Vidard A, Anderson D (2008) The ecmwf ora-s3 ocean analysis system. Mon Weather Rev 136(8):3018–3034

    Article  Google Scholar 

  • Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The ERA-Interim archive. ERA report series 1. Technical Report. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, pp 16

  • Collins W et al (2008) Evaluation of the hadgem2 model. Hadley Cent. Tech, Note, p 74

  • Daget N, Weaver A, Balmaseda M (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135(641):1071–1094

    Article  Google Scholar 

  • De Felice M, Alessandri A, Catalano F (2015) Seasonal climate forecasts for medium-term electricity demand forecasting. Appl Energy 137:435–444. doi:10.1016/j.apenergy.2014.10.030

    Article  Google Scholar 

  • Dubus L (2010) Practices, needs and impediments in the use of weather/climate information in the electricity sector. In: Troccoli A (ed) Management of weather and climate risk in the energy industry. NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 175–188

    Chapter  Google Scholar 

  • Fu X, Wang B (2004) The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere-ocean model. Mon Weather Rev 132(11):2628–2649

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005a) The rationale behind the success of multi-model ensembles in seasonal forecasting—I Basic concept. Tellus 57A:219–233

    Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus Ser A Dyn Meteorol Oceanogr 57(3):219–233. doi:10.1111/j.1600-0870.2005.00103.x

    Google Scholar 

  • Jeong HI, Ashok K, Song BG, Min YM (2008) Experimental 6-month hindcast and forecast simulation using ccsm3. APCC 2008 Technical Report

  • Jeong H-I et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of enso during boreal winter. Clim Dyn 39(1):475–493. doi:10.1007/s00382-012-1359-3

    Article  Google Scholar 

  • Jin EK et al (2008) Current status of enso prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647. doi:10.1007/s00382-008-0397-3

    Article  Google Scholar 

  • Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing el nino southern oscillation forecasts using sea surface temperature. Tellus A 57(3):340–356

    Google Scholar 

  • Kirtman BP et al (2014) The north american multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteor Soc 95:585–601. doi:10.1175/BAMS-D-12-00050.1

    Article  Google Scholar 

  • Kug J-S, Kang I-S, Choi D-H (2008) Seasonal climate predictability with tier-one and tier-two prediction systems. Clim Dyn 31(4):403–416

    Article  Google Scholar 

  • Lee DY, Ahn J-B, Yoo J-H (2015) Enhancement of seasonal prediction of east asian summer rainfall related to western tropical pacific convection. Clim Dyn 45(3):1025–1042. doi:10.1007/s00382-014-2343-x

    Article  Google Scholar 

  • Lee J-Y, Wang B, Ding Q, Ha K-J, Ahn J-B, Kumar A, Stern B, Alves O (2011) How predictable is the northern hemisphere summer upper-tropospheric circulation? Clim Dyn 37(5):1189–1203. doi:10.1007/s00382-010-0909-9

    Article  Google Scholar 

  • Lee J-Y et al (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:267–283. doi:10.1007/s00382-010-0857-4

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled oagcm using a different approach for ensemble forecasts. J Clim 18(21):4474–4497

    Article  Google Scholar 

  • Mélia DS (2002) A global coupled sea ice-ocean model. Ocean Model 4(2):137–172

    Article  Google Scholar 

  • Merryfield WJ et al (2013) The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon Weather Rev 141(8):2910–2945

    Article  Google Scholar 

  • Min Y-M, Kryjov VN, Oh SM (2014) Assessment of apcc multimodel ensemble prediction in seasonal climate forecasting: retrospective (19832003) and real-time forecasts (2008–2013). J Geophys Res Atmos 119(21):12132–12150. doi:10.1002/2014JD022230

    Article  Google Scholar 

  • Min Y-M, Kryjov VN, Oh SM (2017) Skill of real-time operational forecasts with the apcc multi-model ensemble prediction system during the period 2008–2015. Clim Dyn. doi:10.1007/s00382-017-3576-2

    Google Scholar 

  • Palmer T et al (2004) Development of a European Multimodel Ensemble System for Seasonal to interannual prediction (DEMETER). Bull Am Meteor Soc 85:853–872

    Article  Google Scholar 

  • Richardson D (2006) Predictability and economic value. In: Palmer I, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, New York, USA, pp 628–644

    Chapter  Google Scholar 

  • Richardson DS (2011) Economic value and skill. In: Joliffe IT, Stephenson DB (eds) Forecast verification: a practitioner’s guide in atmospheric science. Wiley, Chichester, UK. doi:10.1002/9781119960003.ch9

    Google Scholar 

  • Roebber PJ, Bosart LF (1996) The complex relationship between forecast skill and forecast value: a real-world analysis. Weather Forecast 11(4):544–559

    Article  Google Scholar 

  • Rothstein B, Halbig G (2010) Weather sensitivity of electricity supply and data services of the German Met Office. In: Troccoli A (ed) Management of weather and climate risk in the energy industry. NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 253–266

    Chapter  Google Scholar 

  • Saha S et al (2006) The ncep climate forecast system. J Clim 19(15):3483–3517

    Article  Google Scholar 

  • Thornes JE, Stephenson DB (2001) How to judge the quality and value of weather forecast products. Meteorol Appl 8(03):307–314

    Article  Google Scholar 

  • Vintzileos A, Rienecker MM, Suarez MJ, Miller SK, Pegion PJ, Bacmeister JT (2003) Simulation of the El Nino–Southern oscillation phenomenon with NASAs seasonal-to-interannual prediction project coupled general circulation model. CLIVAR Exch 8:25–27

    Google Scholar 

  • Vitart F et al (2007) Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by eurosip. Geophys Res Lett 34(L16):815. doi:10.1029/2007GL030740

    Google Scholar 

  • Wang B et al (2008) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30(6):605–619. doi:10.1007/s00382-007-0310-5

    Article  Google Scholar 

  • Wang B et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CLIPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33(1):93–117

    Article  Google Scholar 

  • Weigel A, Liniger M, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? QJRMS 134:241–260

    Article  Google Scholar 

  • Weisheimer A et al (2009) Ensembles: a new multi-model ensemble for seasonal-to-annual predictions—-skill and progress beyond demeter in forecasting tropical pacific SSTS. Geophys Res Lett 6(21):L21711

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic, Burlington, USA

    Google Scholar 

  • Yoo JH, Kang I-S (2005) Theoretical examination of a multi model composite. Geophys Res Lett 32(L18):707. doi:10.1029/2005GL023513

    Google Scholar 

  • Zhang S, Harrison M, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135(10):3541–3564

    Article  Google Scholar 

  • Zhong A, Hendon HH, Alves O (2005) Indian ocean variability and its association with enso in a global coupled model. J Clim 18(17):3634–3649

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union Seventh Framework Programme (FP7/2007–13) under Grant 308378 (SPECS Project; http://specs-fp7.eu/) and under Grant Agreement No. 303208 (CLIMITS Project). Further support was provided to this work by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 641816 (CRESCENDO project; http://crescendoproject.eu/) and under Grant Agreement No. 704585 (PROCEED project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alessandri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessandri, A., Felice, M.D., Catalano, F. et al. Grand European and Asian-Pacific multi-model seasonal forecasts: maximization of skill and of potential economical value to end-users . Clim Dyn 50, 2719–2738 (2018). https://doi.org/10.1007/s00382-017-3766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3766-y

Keywords

Navigation