Skip to main content

Advertisement

Log in

Impact of climate change on sea surface wind in Southeast Asia, from climatological average to extreme events: results from a dynamical downscaling

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Southeast Asia (SEA) climate shows a large range of variability scales, from extreme events to interannual variability. Understanding its answer to climate change is of primary scientific and socio-economic importance. IPCC 5th assessment report however pointed the lack of knowledge in regional climate change and its impact in SEA. In particular little is known about the answer of wind to climate change. The impact of climate change on sea surface wind speed is investigated here, examining changes in daily and extreme event scales, interannual variability and climatological average between the twentieth and twenty-first centuries. For that the RegCM4 regional model was used to perform a dynamical downscaling of CMIP5 simulations done with CNRM-CM5 global climate model under RCP4.5 and RCP8.5 hypothesis. Comparisons with QuikSCAT satellite data show that the downscaled simulations perform overall better than the global simulations. Both models produce regionally and seasonally contrasted results in terms of daily wind speed answer to climate change. Global simulations produce mostly weak and non-significant changes, only suggesting an intensification of northeast winter monsoon in the northern SEA. Conversely regional downscaled simulations suggest from March to November in the northern South China Sea and Pacific regions a significant weakening of wind speed from climatological to daily scales (summer monsoon to extreme values), for regions and periods of initially strong values, associated with a 40–50% decrease of tropical cyclones frequency. These changes result from the increase of mean meridional south to north sea level pressure gradient and decrease its daily variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ashfaq M, Shi Y, Tung W-W, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. https://doi.org/10.1029/2008GL036500

    Article  Google Scholar 

  • Chotamonsak C, Salathé EP, Kreasuwan J, Chantara S, Siriwitayakorn K (2011) Projected climate change over Southeast Asia simulated using a WRF regional climate model. Sci Lett Atm. https://doi.org/10.1002/asl.313

    Article  Google Scholar 

  • Cruz FT, Narisma GT, Dado JB, Singhruck P, Linarka UA, Wati T, Tangang F, Juneng L, Phan-Van T, Ngo-Duc T, Santisirisomboon J, Gunawan D, Aldrian E (2017) Sensitivity of temperature to physical parameterization schemes of RegCM4 over the CORDEX-Southeast Asia Region. Int J Climatol 37:5139–5153. https://doi.org/10.1002/joc.5151

    Article  Google Scholar 

  • Da ND, Herrmann M, Morrow R, Niño R, Huan NM, Trinh NQ (2019) Contributions of wind, eddies, chaotic variability and ENSO to the interannual variability of the South Vietnam Upwelling. J Geophys Res. https://doi.org/10.1029/2018JC014647

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR Community Climate ModelRep., 72pp, Natl Cent for Atmos Res, Boulder, Colorado, NCAR Tech Note

  • Emanuel KA, Živković-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782

    Article  Google Scholar 

  • Endo N, Matsumoto J, Lwin T (2009) Trends in precipitation extremes over Southeast Asia. SOLA 5:168–171

    Article  Google Scholar 

  • Fu R (2015) Global warming-accelerated drying in the tropics. Proc Natl Acad Sci 112(12):3593–3594

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos. https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal J (2004) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: present day climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Guttler I, OíBrien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Hanafusa M, Sasaki H, Murata A, Kurihara K (2013) Projection of changes in future surface wind around japan using a non-hydrostatic regional climate model. SOLA 9:23–26. https://doi.org/10.2151/sola.2013-006

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699

    Article  Google Scholar 

  • Ho TMH, Phan VT, Le NQ, Nguyen QT (2011) Detection of extreme climatic events from observed data and projection with RegCM3 over Vietnam. Clim Res 49:87–100

    Article  Google Scholar 

  • Holtslag AAM, De Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575

    Article  Google Scholar 

  • IPCC Climate Change (2013) The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Ito K, Kuroda T, Saito K, Wada A (2015) Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere–ocean coupled model. Weather Forecast 30:793–808. https://doi.org/10.1175/WAF-D-14-00034.1

    Article  Google Scholar 

  • Izumo T, Montegut C, Luo J, Behera S, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21(21):5603–5623

    Article  Google Scholar 

  • Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102. https://doi.org/10.1007/s00382-013-1676-1

    Article  Google Scholar 

  • Juneng L, Tangang F, Chung JX, Ngai ST, The TW, Narisma G, Cruz F, Phan-Van T, Ngo-Duc T, Santisirisomboon J, Singhruck P, Gunawan D, Aldrian E (2016) Sensitivity of the Southeast Asia rainfall simulations to cumulus and ocean flux parameterization in RegCM4. Clim Res 69:59–77. https://doi.org/10.3354/cr01386

    Article  Google Scholar 

  • Kajikawa Y, Yasunari T, Yoshida S, Fujinami H (2012) Advanced Asian summer monsoon onset in recent decades. Geophys Res Lett 39:L03803

    Article  Google Scholar 

  • Kiehl JT (1996) Description of the NCAR community climate model (CCM3). Report, 152p, Boulder, Colorado: Tech. Note, NCAR/TN-420+STR

  • Kitoh A (2017) The Asian monsoon and its future change in climate models: a review. J Meteor Soc Japan 95:7–33. https://doi.org/10.2151/jmsj.2017-002

    Article  Google Scholar 

  • Lal M, Harasawa H (2001) Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate models. J Meteorol Soc Jpn 79(1):291–297. https://doi.org/10.2151/jmsj.79.219

    Article  Google Scholar 

  • Lau WKM, Kim K-M (2015) Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc Natl Acad Sci 112:3630–3635

    Article  Google Scholar 

  • Liu Y, Tang D, Evgeny M (2019) Chlorophyll concentration response to the typhoon wind-pump induced upper ocean processes considering air–sea heat exchange. Remote Sens 1825:11

    Google Scholar 

  • Loh JL, Tangang F, Juneng L et al (2016) Projected rainfall and temperature changes over Malaysia at the end of the 21st century based on PRECIS modelling system. Asia-Pac J Atmos Sci 52:191. https://doi.org/10.1007/s13143-016-0019-7

    Article  Google Scholar 

  • Loo YY, Billa L, Singh A (2015) Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci Front 6:817–823. https://doi.org/10.1016/j.gsf.2014.02.009

    Article  Google Scholar 

  • Ma J, Xie SP, Kosaka Y (2012) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim 25(8):2979–2994

    Article  Google Scholar 

  • Manomaiphiboon K, Octaviani M, Torsri K, Towprayoon S (2013) Projected changes in means and extremes of temperature and precipitation over Thailand under three future emissions scenarios. Clim Res 58:97–115. https://doi.org/10.3354/cr01188

    Article  Google Scholar 

  • Manton MJ et al (2001) Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol 21(3):269–284

    Article  Google Scholar 

  • Meehl GA, Arblaster JM (2002) The tropospheric biennial oscillation and Asian-Australian monsoon rainfall. J Clim 15(7):722–744

    Article  Google Scholar 

  • Nakicenovic N et al (2000) IPCC Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16(5):834–848

    Article  Google Scholar 

  • Ngo-Duc T, Kieu C, Thatcher M, Nguyen-Le D, Phan-Van T (2014) Climate projections for Vietnam based on regional climate models. Clim Res 60:199–213. https://doi.org/10.3354/cr01234

    Article  Google Scholar 

  • Ngo-Duc T, Tangang FT, Santisirisomboon J, Cruz F, Trinh-Tuan L, Nguyen-Xuan T, Phan-Van T, Juneng L, Narisma G, Singhruck P, Gunawan D, Aldrian E (2017) Performance evaluation of RegCM4 in simulating Extreme Rainfall and Temperature Indices over the CORDEX-Southeast Asia Region. Int J Climatol 37:1634–1647. https://doi.org/10.1002/joc.4803

    Article  Google Scholar 

  • Nguyen-Le D, Matsumoto J, Ngo-Duc T (2014) Climatological onset date of summer monsoon in Vietnam. Int J Climatol 34:3237–3250. https://doi.org/10.1002/joc.3908

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Pan J, Sun Y (2013) Estimate of ocean mixed layer deepening after a typhoon passage over the South China sea by using satellite data. J Phys Oceanogr 43(3):498–506. https://doi.org/10.1175/JPO-D-12-01.1

    Article  Google Scholar 

  • Phan VT, Long TT, Hai BH, Kieu C (2015) Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2. Clim Res 62:115–129

    Article  Google Scholar 

  • Raghavan SV, Vu MT, Liong SY (2017) Ensemble climate projections of mean and extreme rainfall over Vietnam. Glob Planet Change 148:96–104. https://doi.org/10.1016/j.gloplacha.2016.12.003

    Article  Google Scholar 

  • Raghavan SV, Liu J, Nguyen NS, Vu MT, Liong S-Y (2018) Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theor Appl Climatol 132:989–1002. https://doi.org/10.1007/s00704-017-2111-z

    Article  Google Scholar 

  • Shen C, Yan Y, Zhao H, Pan J, Devlin A (2018) Influence of monsoonal winds on chlorophyll-α distribution in the Beibu Gulf. PLoS ONE 13(1):e0191051. https://doi.org/10.1371/journal.pone.0191051

    Article  Google Scholar 

  • Siew JH, Tangang FT, Juneng L (2014) Evaluation of CMIP5 coupled atmosphere–ocean general circulation models and projection of the Southeast Asian winter monsoon in the 21st century. Int J Climatol 34:2872–2884. https://doi.org/10.1002/joc.3880

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, Meteorology, vol 110, pp 25–35

  • Takahashi HG (2011) Long-term changes in rainfall and tropical cyclone activity over South and Southeast Asia. Adv Geosci 30:17–22

    Article  Google Scholar 

  • Tangang F, Supari S, Chung JX, Cruz F, Salimun E, Ngai ST, Juneng L, Santisirisomboon J, Santisirisomboon J, Ngo-Duc T, Phan-Van T, Narisma G, Singhruck P, Gunawan D, Aldrian E, Sopaheluwakan A, Nikulin G, Yang H, Remedio ARC, Sein D, Hein-Griggs D (2018) Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C. APN Sci Bull. https://doi.org/10.30852/sb.2018.436

  • Tangang F, Santisirisomboon J, Juneng L, Salimun E, Chung J, Supari S, Cruz F, Ngai ST, Ngo-Duc T, Singhruck P, Narisma G, Santisirisomboon J, Wongsaree W, Promjirapawat K, Sukamongkol Y, Srisawadwong R, Setsirichock D, Phan-Van T, Aldrian E, Gunawan D, Nikulin G, Yang H (2019) Projected future changes in mean precipitation over Thailand based on multi-model regional simulations of CORDEX Southeast Asia. Int J Climatol. https://doi.org/10.1002/joc.6163

    Article  Google Scholar 

  • Trinh-Tuan L, Matsumoto J, Tangang FT, Juneng L, Cruz F, Narisma G, Santisirisomboon J, Phan-Van T, Gunawan D, Aldrian E, Ngo-Duc T (2019) Application of quantile mapping bias correction for mid-future precipitation projections over Vietnam. SOLA 15:1–6. https://doi.org/10.2151/sola.2019-001

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2017) World Population Prospects: the 2017 Revision, Key Findings and Advance Tables. ESA/P/WP/248.

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. https://doi.org/10.1175/JCLI4258.1

    Article  Google Scholar 

  • Vecchi GA et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2011) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121. https://doi.org/10.1007/s00382-011-1259-y.

    Article  Google Scholar 

  • Walsh K (1997) Objective detection of tropical cyclones in high-resolution analyses. Mon Weather Rev 125:1767–1779

    Article  Google Scholar 

  • Wang B, Lin H, Zhang Y, Lu MM (2002) Definition of South China Sea monsoon onset and commencement of the East Asia Summer Monsoon. J. Clim. 17:699–710

    Article  Google Scholar 

  • Wang B, Huang F, Wu Z, Yang J, Fu X, Kikuchi K (2009) Multi-scale climate variability of the South China Sea monsoon: a review. Dyn Atmos Ocean 47(1–3):15–37. https://doi.org/10.1016/j.dynatmoce.2008.09.004

    Article  Google Scholar 

  • Wu L, Wang B, Geng S (2005) Growing typhoon influence on east Asia. Geophys Res Lett 32:L18703. https://doi.org/10.1029/2005GL022937

    Article  Google Scholar 

  • Wyrtki K (1961) Physical oceanography of the Southeast Asian waters. La Jolla, California: The University of California, Scripps Institution of Oceanography, 1961. NAGA report, volume 2, Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959–1961

  • Xie S, Xie Q, Wang D, Liu W (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108(C8):3261. https://doi.org/10.1029/2003JC001867

    Article  Google Scholar 

  • Yihui D, Chan JCL (2005) 2005: the East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. https://doi.org/10.1007/s00703-005-0125-z

    Article  Google Scholar 

  • Yokoi S, Takayabu YN, Murakami H (2013) Attribution of projected future changes in tropical cyclone passage frequency over the Western North Pacific. J Clim 26:4096–4111. https://doi.org/10.1175/JCLI-D-12-00218.1

    Article  Google Scholar 

  • Zhang Z, Chan JCL, Dinh Y (2002) Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int J Climatol 24:1461–1482

    Article  Google Scholar 

  • Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. J Clim 26:5689–5697

    Article  Google Scholar 

  • Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulations of the interannual variability of the Western North Pacific Summer Monsoon? J Clim 26:2353–2367

    Article  Google Scholar 

Download references

Acknowledgements

CNRM-CM5 outputs can be downloaded from the ESGS website (https://esgf-node.llnl.gov/projects/esgf-llnl/), information about output files are available on CNRM-GAME website (https://www.umr-cnrm.fr/cmip5/spip.php?article9). This work is a part of LOTUS international joint laboratory (lotus.usth.edu.vn) and CORDEX-SEA activities. Thanh Ngo-Duc is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant 105.06-2018.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marine Herrmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, M., Ngo-Duc, T. & Trinh-Tuan, L. Impact of climate change on sea surface wind in Southeast Asia, from climatological average to extreme events: results from a dynamical downscaling. Clim Dyn 54, 2101–2134 (2020). https://doi.org/10.1007/s00382-019-05103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05103-6

Keywords

Navigation