Skip to main content

Advertisement

Log in

Future projections in the climatology of global low-level jets from CORDEX-CORE simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The potential changes in the strength and location of five low-level jets (LLJs) located within four Coordinated Regional Climate Downscaling Experiment (CORDEX) domains are examined for present and future climate conditions using an ensemble of simulations conducted with the RegCM4 regional model at a 25 km horizontal grid spacing. Lateral and lower boundary forcing fields are from three General Circulation Models (GCMs), and we analyse a historical period (1995–2014) along with two future periods (2041–2060 and 2080–2099) under the Representative Concentration Pathways 2.6 and 8.5. The RegCM4, as driven by the GCMs, is capable of capturing most of the observed climatological features of the LLJs, both in terms of spatial location and seasonal evolution. Analysis of the influence of global warming on the LLJs shows a consistent strengthening of the jets and a shift in their location under both warming scenarios. The Monsoon and West African westerly LLJs exhibit a northward shift, while the Caribbean and South American LLJs present a westward expansion. The use of an ensemble of high-resolution simulations is found to provide a key element for a robust assessment of changes in LLJs associated with future global warming scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amador JA (2008) The Intra-Americas sea low-level jet. Ann N Y Acad Sci 1146:153–188

    Article  Google Scholar 

  • Aneesh S, Sijikumar S (2016) Changes in the south Asian monsoon low level jet during recent decades and its role in the monsoon water cycle. J Atmos Solar Terr Phys 138:47–53

    Article  Google Scholar 

  • Arritt RW, Rink TD, Segal M, Todey DP, Clark CA, Mitchell MJ, Labas KM (1997) The Great Plains low-level jet during the warm season of 1993. Mon Weather Rev 125:2176–2192

    Article  Google Scholar 

  • Ashfaq M et al (2017) Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim Dyn 49(1–2):193–223

    Article  Google Scholar 

  • Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of the nocturnal inversions. Bull Am Meteorol Soc 38:283–290

    Article  Google Scholar 

  • Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96:833–850

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22:3422–3448

    Article  Google Scholar 

  • Bukovsky MS, McCrary RR, Seth A, Mearns LO (2017) A mechanistically credible, poleward shift in warm season precipitation projected for the U.S. southern Great Plains? J Clim 30:8275–8298. https://doi.org/10.1175/JCLI-D-16-0316.1

    Article  Google Scholar 

  • Chelton DB, Freilich MH, Esbensen SK (2000) Satellite observations of the wind jets off the Pacific coast of Central America. Part I: case studies and statistical characteristics. Mon Weather Rev 128(7):1993–2018

    Article  Google Scholar 

  • Cook KH (1999) Generation of the African easterly jet and its role in determining west African precipitation. J Clim 12(5):1165–1184

    Article  Google Scholar 

  • Cook KH, Vizy EK, Launer ZS, Patricola CM (2008) Springtime intensification of the Great Plains low-level jet and midwest precipitation in GCM simulations of the twenty-first century. J Clim 21:6321–6340

    Article  Google Scholar 

  • Corrales-Suastegui A, Fuentes-Franco R, Pavia EG (2019) The mid-summer drought over Mexico and Central America in the 21st century. Int J Climatol. https://doi.org/10.1002/joc.6296

    Article  Google Scholar 

  • Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu UU (2014) Assessment of CMIP5 global model simulations over the sub-set of CORDEX domains used in the Phase I CREMA Experiment. Clim Change. https://doi.org/10.1007/S10584-013-0935-9

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer. Q J R Meteorol Soc 95:362–380

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, Wargan K (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Article  Google Scholar 

  • Gimeno L, Dominguez F, Nieto R, Trigo R, Drumond A, Reason CJ, Taschetto AS, Ramos AM, Kumar R, Marengo J (2016) Major mechanisms of atmospheric moisture transport and their roles in extreme precipitation events. Annu Rev Environ Res. https://doi.org/10.1146/annurev-environ-110615-085558

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Grodsky SA, Carton JA, Nigam S (2003) Near surface westerly wind jet in the Atlantic ITCZ. Geophys Res Lett. https://doi.org/10.1029/2003GL017867

    Article  Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  • Harding KJ, Snyder PK (2014) Examining future changes in the character of Central U.S. warm-season precipitation using dynamical downscaling. J Geophys Res 119:13116–13136. https://doi.org/10.1002/2014JD022575

    Article  Google Scholar 

  • Hersbach H, Dee D (2016) ERA5 reanalysis is in production, ECMWF Newsletter, vol 147, p 7. https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production. Last access 14 Nov 2019

  • Hidalgo HG, Durán-Quesada AM, Amador JA, Alfaro EJ (2015) The Caribbean low-level jet, the Inter-Tropical Convergence Zone and the precipitation patterns in the Intra-Americas sea: a pro-posed dynamical mechanism. Geogr Ann Ser A: Phys Geogr 97:41–59. https://doi.org/10.1111/geoa.12085

    Article  Google Scholar 

  • Hidalgo H, Alfaro E, Amador J, Bastidas A (2019) Precursors of quasi-decadal dry-spells in the Central America Dry Corridor. Clim Dyn 53(3–4):1307–1322. https://doi.org/10.1007/s00382

    Article  Google Scholar 

  • Higgins RW, Yao Y, Yarosh ES, Janowiak JE, Mo KC (1997) Influence of the Great Plains Low-Level Jet on summertime precipitation and moisture transport over the central United States. J Clim 10:481–507. https://doi.org/10.1175/1520-0442(1997)010%3c0481:IOTGPL%3e2.0.CO;2

    Article  Google Scholar 

  • Holton JR (1967) The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19:199–205

    Google Scholar 

  • Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Imbach P, Chou SC, Lyra A, Rodrigues D, Rodriguez D, Latinovic D, Siqueira G, Silva A, Garofolo L, Georgiou S (2018) Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 13(4):e0193570. https://doi.org/10.1371/journal.pone.0193570

    Article  Google Scholar 

  • IPCC (2013) IPCC. Climate Change 2013. The Physical Science Basis. In: Stocker TF et al (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Joseph PV, Raman PL (1966) Existence of low level westerly jet-stream over peninsular India during July. Indian J Meteorol Geophys 17:407–410

    Google Scholar 

  • Joseph PV, Sijikumar S (2004) Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J Clim 17:1449–1458. https://doi.org/10.1175/1520-0442(2004)017%3c1449:IVOTLJ%3e2.0.CO;2

    Article  Google Scholar 

  • Kain J-S (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Kain J-S, Fritsch J-M (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Liu HB, He MY, Wang B et al (2014) Advances in low-level jet research and future prospects. J Meteorol Res 28(1):57–75

    Google Scholar 

  • Liu W, Cook KH, Vizy EK (2019) Role of the West African westerly jet in the seasonal and diurnal cycles of precipitation over West Africa. Clim Dyn 54:843–861

    Article  Google Scholar 

  • Marengo JA, Soares WR, Nicolini M, Saulo C (2004) Climatology of low-level jet east of the Andes as derived from the NCEPNCAR reanalysis: characteristics and temporal variability. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, Da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SE (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35(6):1073–1097

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves L, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Parana River Basins. Clim Dyn 38:1829–1848. https://doi.org/10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW et al (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237. https://doi.org/10.1007/s00382-014-2418-8

    Article  Google Scholar 

  • Mei R, Ashfaq M, Rastogi D, Leung LR, Dominguez F (2015) Dominating controls for wetter South Asian summer monsoon in the twenty-first century. J Clim 28(8):3400–3419. https://doi.org/10.1175/JCLI-D-14-00355.1

    Article  Google Scholar 

  • Moss R et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Pal J-S, Small E-E, Eltahir E-A-B (2000) Simulation of regional scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594

    Article  Google Scholar 

  • Parish TR (1982) Barrier winds along the Sierra Nevada Mountains. J Appl Meteorol 21:925–930

    Article  Google Scholar 

  • Parish TR (1983) The influence of the Antarctic Peninsula on the windfield over the western Weddell Sea. J Geophys Res 88:2684–2692

    Article  Google Scholar 

  • Parish TR (2000) Forcing of the summertime low-level jet along the California coast. J Appl Meteorol 39:2421–2433

    Article  Google Scholar 

  • Patricola CM, Cook KH (2007) Dynamics of the West African monsoon under mid-Holocene precessional forcing: regional climate model simulations. J Clim 14:1337–1359

    Google Scholar 

  • Patricola CM, Cook KH (2011) Sub-Saharan Northern African climate at the end of the twenty-first century: forcing factors and climate change processes. Clim Dyn 37:1165–1188

    Article  Google Scholar 

  • Patricola CM, Cook KH (2013) Mid-twenty first century climate change in the central United States. Part II: climate change processes. Clim Dyn 40:569–583

    Article  Google Scholar 

  • Prabha TV, Goswami BN, Murthy BS, Kulkarni JR (2011) Nocturnal low-level jet and ‘atmospheric streams’ over the rain shadow region of Indian Western Ghats. Q J R Meteorol Soc 137:1273–1287

    Article  Google Scholar 

  • Pu B, Cook KH (2010) Dynamics of the West African westerly jet. J Climate 23:6263–6276

    Article  Google Scholar 

  • Pu B, Cook KH (2012) Role of the West African westerly jet in sahel rainfall variations. J Clim 25:2880–2896

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int J Climatol 38:2866–2879. https://doi.org/10.1002/joc.5468

    Article  Google Scholar 

  • Reboita MS, Ambrizzi T, Silva BA, Pinheiro RF, da Rocha RP (2019) The South Atlantic subtropical anticyclone: present and future climate. Front Earth Sci 7:1–15

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Krishnan R, Rajeevan M (2017) A threefold rise in widespread extreme rain events over Central India. Nat Commun 8(708):1–11. https://doi.org/10.1038/s41467-017-00744-9

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S (2006) IPCC’s twentieth-century climate simulations: varied representations of North American hydroclimate variability. J Clim 19(4041):4058. https://doi.org/10.1175/JCLI3809.1

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2015) Poleward shift in the Indian summer monsoon low level jet stream under global warming. Clim Dyn 45:337–351

    Article  Google Scholar 

  • Sandeep S, Ajayamohan R, Boos WR, Sabin T, Praveen V (2018) Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc Natl Acad Sci 115:2681–2686

    Article  Google Scholar 

  • Saulo C, Ruiz J (2007) Synergism between the low-level jet and organized convection in its exit region. Mon Weather Rev 135:1310–1326. https://doi.org/10.1175/MWR3317.1

    Article  Google Scholar 

  • Saulo C, Nicolini M, Chou SC (2000) Model characterization of the South American low-level flow during the 1997–98 spring-summer season. Clim Dyn 16:867–881

    Article  Google Scholar 

  • Soares W, Marengo J (2008) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol 29:1395–1414. https://doi.org/10.1002/joc.1800

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9–10):2711–2744. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9:1698–1711

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Tang Y et al (2016) Evaluation of the southerly low-level jet climatology for the central United States as simulated by NARCCAP regional climate models. Int J Climatol. https://doi.org/10.1002/joc.4636

    Article  Google Scholar 

  • Tang Y et al (2017) Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multimodel simulations. Sci Rep 7:5029

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 78:485–498

    Article  Google Scholar 

  • Taylor MA, Whyte FS, Stephenson TS, Campbell JD (2013) Why dry? Investigating the future evolution of the Caribbean low-level jet to explain projected Caribbean drying. Int J Climatol 32:119–128

    Google Scholar 

  • Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124:745–750. https://doi.org/10.1175/1520-0493(1996)124%3C0745:AEOCRP%3E2.0.CO;2

    Article  Google Scholar 

  • Ting M, Wang H (2006) The role of the North American topography on the maintenance of the Great Plains summer low-level jet. J Atmos Sci 63:1056–1068

    Article  Google Scholar 

  • Tuttle JD, Davis CA (2006) Corridors of warm season precipitation in the central United States. Mon Weather Rev 134:2297–2317. https://doi.org/10.1175/MWR3188.1

    Article  Google Scholar 

  • Varikoden H, Revadekar JV (2019) On the extreme rainfall events during the southwest monsoon season in northeast regions of the Indian subcontinent. Meteorol Appl. https://doi.org/10.1002/met.1822

    Article  Google Scholar 

  • Vera C, Baez J, Douglas M, Emmanuel CB, Marengo JA, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva Dias MA, Silva Dias P, Zipser E (2006a) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Dias L, Zhang C (2006b) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • Viswanadhapalli Y, Dasari HP, Dwivedi S, Madineni VR, Langodan S, Hoteit I (2019) Variability of monsoon low-level jet and associated rainfall over India. Int J Climatol. https://doi.org/10.1002/joc.6256

    Article  Google Scholar 

  • Vizy E, Cook K, Crétat J, Neupane N (2013) Projections of a Wetter Sahel in the twenty-first century from global and regional models. J Clim. https://doi.org/10.1175/JCLI-D-12-00533.1

    Article  Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Weaver SJ, Nigam S (2011) Recurrent supersynoptic evolution of the Great Plains low-level jet. J Clim 24:575–582. https://doi.org/10.1175/2010JCLI3445.1

    Article  Google Scholar 

  • Wilson SS, Mohanakumar K (2019) A new circulation index for the detection of monsoon intensity. Int J Climatol. https://doi.org/10.1002/joc.6312

    Article  Google Scholar 

  • Xavier A, Kottayil A, Mohanakumar K, Xavier PK (2018) The role of monsoon low-level jet in modulating heavy rainfall events. Int J Climatol 38:e569–e576. https://doi.org/10.1002/joc.5390

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson R-E (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zhang ZS et al (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev 5:523–533. https://doi.org/10.5194/gmd-5-523-2012

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the comments and suggestions of the editor and three anonymous reviewers, which helped to improve this manuscript. The authors thank the CMIP5, ECMWF, NASA, ICTP, NCAR and Oak Ridge National Laboratory for making available the data used in this work. Special thanks for Graziano Giuliani and Ivan Girotto from our ICTP group. We would like to thank the CINECA super-computing center for access to the HPC system. M.A. was supported by the Oak Ridge Leadership Computing Facility and the National Climate‐Computing Research Center at the Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Abraham Torres-Alavez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 12107 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Alavez, J.A., Das, S., Corrales-Suastegui, A. et al. Future projections in the climatology of global low-level jets from CORDEX-CORE simulations. Clim Dyn 57, 1551–1569 (2021). https://doi.org/10.1007/s00382-021-05671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05671-6

Keywords

Navigation