Skip to main content
Log in

Influence of hydrostatic pressure on intracoronary indices of stenosis severity in vivo

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

An influence of hydrostatic pressure on intracoronary indices of stenosis severity in vitro was recently reported. We sought to analyze the influence of hydrostatic pressure, caused by the height difference between the distal and proximal pressure sensor after guidewire positioning in the interrogated vessel, on intracoronary pressure measurements in vivo.

Methods and results

In 30 coronary stenoses, intracoronary pressure measurements were performed in supine, left, and right lateral patient position. Height differences between the distal and proximal pressure sensor were measured by blinded observers. Measurement results of the position with the highest (“high”) and lowest height difference (“low”) were compared. In group “high”, all measured indices were higher: mean difference of fractional flow reserve (FFR) 0.045 (SD 0.033, 95% CI 0.033–0.057, p < 0.0001), of instantaneous wave-free ratio (iFR) 0.043 (SD 0.04, 95% CI 0.029–0.057, p < 0.0001), and of resting Pd/Pa 0.037 (SD 0.034, 95% CI 0.025–0.049, p < 0.0001). Addition of the physically expectable hydrostatic pressure to the distal coronary pressures of the control group abolished the differences: corrected ∆FFR − 0.006 (SD 0.027, 95% CI − 0.015 to 0.004, p = 0.26), corrected ∆Pd/Pa − 0.008 (SD 0.03, 95% CI − 0.019 to 0.003, p = 0.18). Adjustment for hydrostatic pressure of FFR values in a standard supine position increased all values in anterior vessels and decreased all values in posterior vessels. The mean changes of FFR due to adjustment were: LAD − 0.048 (SD 0.016), CX 0.02 (SD 0.009), RCA 0.02 (SD 0.021). Dichotomous severity classification changed in 12.9% of stenoses.

Conclusions

The study demonstrates a relevant influence of hydrostatic pressure on intracoronary indices of stenosis severity in vivo, caused by the height differences between distal and proximal pressure sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

95% CI:

95% confidence interval

BMI:

Body mass index

CX:

Circumflex artery

FFR:

Fractional flow reserve

iFR:

Instantaneous wave-free ratio

LAD:

Left anterior descending artery

LAO:

Left anterior oblique

LoA:

Limits of agreement

LVEF:

Left ventricular ejection fraction

Pa:

Aortic pressure

Pd:

Distal coronary pressure

RCA:

Right coronary artery

RPD:

Right posterior descending artery

RPL:

Right posterolateral artery

SD:

Standard deviation

References

  1. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193

    Article  CAS  PubMed  Google Scholar 

  2. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (adenosine vasodilator independent stenosis evaluation) study. J Am Coll Cardiol 59:1392–1402

    Google Scholar 

  3. Härle T, Bojara W, Meyer S, Elsässer A (2015) Comparison of instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR)—first real world experience. Int J Cardiol 199:1–7

    Article  PubMed  Google Scholar 

  4. Härle T, Meyer S, Bojara W, Vahldiek F, Elsässer A (2017) Intracoronary pressure measurement differences between anterior and posterior coronary territories. Herz 42:395–402

    Article  PubMed  Google Scholar 

  5. Härle T, Luz M, Meyer S, Kronberg K, Nickau B, Escaned J, Davies J, Elsässer A (2017) Effect of coronary anatomy and hydrostatic pressure on intracoronary indices of stenosis severity. JACC Cardiovasc Interv 10:764–773

    Article  PubMed  Google Scholar 

  6. Härle T, Zeymer U, Hochadel M, Zahn R, Kerber S, Zrenner B, Schächinger V, Lauer B, Runde T, Elsässer A (2017) Real-world use of fractional flow reserve in Germany: results of the prospective ALKK coronary angiography and PCI registry. Clin Res Cardiol 106:140–150

    Article  PubMed  Google Scholar 

  7. Härle T, Meyer S, Vahldiek F, Elsässer A (2016) Differences between automatically detected and steady-state fractional flow reserve. Clin Res Cardiol 105:127–134

    Article  PubMed  Google Scholar 

  8. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez-Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli MF, Pirlet C, Pomar JL, Reifart N, Ribichini FL, Schalij MJ, Sergeant P, Serruys PW, Silber S, Sousa Uva M, Taggart D (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555

    Article  PubMed  Google Scholar 

  9. Petraco R, Escaned J, Sen S, Nijjer S, Asrress KN, Echavarria-Pinto M, Lockie T, Khawaja MZ, Cuevas C, Foin N, Broyd C, Foale RA, Hadjiloizou N, Malik IS, Mikhail GW, Sethi A, Kaprielian R, Baker CS, Lefroy D, Bellamy M, Al-Bustami M, Khan MA, Hughes AD, Francis DP, Mayet J, Di Mario C, Redwood S, Davies JE (2013) Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry. EuroIntervention 9:91–101

    Article  PubMed  Google Scholar 

  10. Kobayashi Y, Tonino PA, De Bruyne B, Yang HM, Lim HS, Pijls NH, Fearon WF, Investigators FS (2016) The impact of left ventricular ejection fraction on fractional flow reserve: insights from the FAME (fractional flow reserve versus angiography for multivessel evaluation) trial. Int J Cardiol 204:206–210

    Article  Google Scholar 

  11. Hinghofer-Szalkay H (1986) Method of high-precision microsample blood and plasma mass densitometry. J Appl Physiol (1985) 60:1082–1088

    Article  CAS  Google Scholar 

  12. Hinghofer-Szalkay H (1985) Volume and density changes of biological fluids with temperature. J Appl Physiol (1985) 59:1686–1689

    Article  CAS  Google Scholar 

  13. Hinghofer-Szalkay H, Greenleaf JE (1987) Continuous monitoring of blood volume changes in humans. J Appl Physiol (1985) 63:1003–1007

    Article  CAS  Google Scholar 

  14. Petraco R, Sen S, Nijjer S, Echavarria-Pinto M, Escaned J, Francis DP, Davies JE (2013) Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions. JACC Cardiovasc Interv 6:222–225

    Article  PubMed  Google Scholar 

  15. Wunderlich W, Roehrig B, Fischer F, Arntz HR, Agrawal R, Morguet A, Schultheiss HP, Horstkotte D (1998) The impact of vessel and catheter position on the measurement accuracy in catheter-based quantitative coronary angiography. Int J Card Imaging 14:217 – 27

    Article  CAS  PubMed  Google Scholar 

  16. Emerson RJ, Banasik JL (1994) Effect of position on selected hemodynamic parameters in postoperative cardiac surgery patients. Am J Crit Care 3:289 – 99

    CAS  PubMed  Google Scholar 

  17. Potger KC, Elliott D (1994) Reproducibility of central venous pressures in supine and lateral positions: a pilot evaluation of the phlebostatic axis in critically ill patients. Heart Lung 23:285–299

    Google Scholar 

  18. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367

    Article  CAS  PubMed  Google Scholar 

  19. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W (1994) Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 89:1013–1022

    Article  PubMed  Google Scholar 

  20. Layland J, Wilson AM, Whitbourn RJ, Burns AT, Somaratne J, Leitl G, Macisaac AI (2013) Impact of right atrial pressure on decision-making using fractional flow reserve (FFR) in elective percutaneous intervention. Int J Cardiol 167:951–953

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Härle.

Ethics declarations

Conflict of interest

T. Härle reports non-financial support from Philips Volcano independent from this study during the conduct of the study. J. Davies is a consultant for Philips Volcano and holds licensed patents pertaining to the iFR technology. The other authors have no conflicts of interest to declare.

Funding

None.

Ethical approval

The study complies with the Declaration of Helsinki. The ethics committee of the Medical Association of Lower Saxony and the Federal Office for Radiation Protection approved the study protocol.

Informed consent

Written informed consent was obtained from all patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härle, T., Luz, M., Meyer, S. et al. Influence of hydrostatic pressure on intracoronary indices of stenosis severity in vivo. Clin Res Cardiol 107, 222–232 (2018). https://doi.org/10.1007/s00392-017-1174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1174-2

Keywords

Navigation