Skip to main content
Log in

Non-enzymatic antioxidant capacity (NEAC) estimated by two different dietary assessment methods and its relationship with NEAC plasma levels

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We aimed to quantify and compare dietary non-enzymatic antioxidant capacity (NEAC), estimated using two dietary assessment methods, and to explore its relationship with plasma NEAC.

Methods

Fifty healthy subjects volunteer to participate in this study. Two dietary assessment methods [a food frequency questionnaire (FFQ) and a 24-hour recall (24-HR)] were used to collect dietary information. Dietary NEAC, including oxygen radical absorbance capacity (ORAC), total polyphenols, ferric-reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity, was estimated using several data sources of NEAC content in food. NEAC status was measured in fasting blood samples using the same assays. We performed nonparametric Spearman’s correlation analysis between pairs of dietary NEAC (FFQ and 24-HR) and diet-plasma NEAC, with and without the contribution of coffee’s NEAC. Partial correlation analysis was used to estimate correlations regardless of variables potentially influencing these relationships.

Results

FFQ-based NEAC and 24-HR-based NEAC were moderately correlated, with correlation coefficients ranging from 0.54 to 0.71, after controlling for energy intake, age and sex. Statistically significant positive correlations were found for dietary FRAP, either derived from the FFQ or the 24-HR, with plasma FRAP (r ~ 0.30). This weak, albeit statistically significant, correlation for FRAP was mostly present in the fruits and vegetables food groups. Plasma ORAC without proteins and 24-HR-based total ORAC were also positively correlated (r = 0.35).

Conclusion

The relationship between dietary NEAC and plasma FRAP and ORAC suggests the dietary NEAC may reflect antioxidant status despite its weak in vivo potential, supporting further its use in oxidative stress-related disease epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TAC:

Total antioxidant capacity

NEAC:

Non-enzymatic antioxidant capacity

ORAC:

Oxygen radical absorbance capacity

FRAP:

Ferric-reducing antioxidant power

TRAP:

Total radical-trapping antioxidant parameters

TEAC-ABTS:

Trolox equivalent antioxidant capacity

VCEAC:

Vitamin C equivalent antioxidant capacity

GAE:

Gallic acid equivalent

Tp:

Total phenolic compounds

FCR:

Folin–Ciocalteu reagent

FFQ:

Food frequency questionnaire

24-HR:

24-Hour recall

CI:

Confidence interval

BMI:

Body mass index

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidant in normal physiological function and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  Google Scholar 

  2. Wang X, Ouyang YY, Liu J, Zhu MM, Zhao G, Bao W, Hu FB (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose–response meta-analysis of prospective cohort studies. BMJ 349:g4490. doi:10.1136/bmj.g4490

    Article  Google Scholar 

  3. Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341:c4229. doi:10.1136/bmj.c4229

    Article  Google Scholar 

  4. O’Shea N, Arendt EK, Gallagher E (2012) Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov Food Sci Emerg Technol 16:1–10. doi:10.1016/j.ifset.2012.06.002

    Article  Google Scholar 

  5. Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 12(11):401–413

    Article  CAS  Google Scholar 

  6. Serafini M, Jakszyn P, Luján-Barroso L, Agudo A, Bueno-de-Mesquita HB, van Duijnhoven FJB, Jenab M, Navarro C, Palli D, Boeing H, Wallström P, Regnér S, Numans ME, Carneiro F, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Grioni S, Panico S, Tumino R, Sacerdote C, Quirós JR, Molina-Montes E, Huerta Castaño JM, Barricarte A, Amiano P, Khaw KT, Wareham N, Allen NE, Key TJ, Jeurnink SM, Peeters PHM, Bamia C, Valanou E, Trichopoulou A, Kaaks R, Lukanova A, Bergmann MM, Lindkvist B, Stenling R, Johansson I, Dahm CC, Overvad K, Jensen M, Olsen A, Tjonneland A, Lund E, Rinaldi S, Michaud D, Mouw T, Riboli E, González CA (2012) Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 131(4):E544–E554. doi:10.1002/ijc.27347

    Article  CAS  Google Scholar 

  7. Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44(7):711–720. doi:10.3109/10715761003758114

    Article  CAS  Google Scholar 

  8. Ou B, Hampsch-Woodill M, Prior RI (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49(10):4619–4626. doi:10.1021/jf010586o

    Article  CAS  Google Scholar 

  9. Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–57

    Article  CAS  Google Scholar 

  10. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 18(1):29–36

    Article  CAS  Google Scholar 

  11. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  12. U.S. Department of Agriculture, Agricultural Research Service (2010) Oxygen radical absorbance capacity (ORAC) of selected foods, release 2. Nutrient Data Laboratory Home Page: http://www.ars.usda.gov/nutrientdata/orac. Accessed May 2010

  13. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133(9):2812–2819

    CAS  Google Scholar 

  14. Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50(11):1030–1038

    Article  CAS  Google Scholar 

  15. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, Jacobs DR, Blomhoff R (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3. doi:10.1186/1475-2891-9-3

    Article  Google Scholar 

  16. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs DR Jr, Blomhoff R (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84(1):95–135

    CAS  Google Scholar 

  17. Dragsted L, Pedersen A, Hermetter A, Basu S, Hansen M, Haren GR, Kall M, Breinholt V, Castenmiller JJM, Stagsted J, Jokobsen J, Skibsted L, Rasmussen SE, Loft S, Sandstöm B (2004) The 6 day study: effects of fruits and vegetables on markers of oxidative stress and antioxidant defence in healthy smokers. Am J Clin Nutr 79(6):1060–1072

    CAS  Google Scholar 

  18. Cao G, Booth SL, Sadowski JA, Prior RL (1998) Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr 68(5):1081–1087

    CAS  Google Scholar 

  19. Razquin C, Martínez JA, Martínez-González MA, Mitjavila MT, Estruch R, Marti A (2009) A 3-y followup of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight. Eur J Clin Nutr 63(12):1387–1393. doi:10.1038/ejcn.2009.106

    Article  CAS  Google Scholar 

  20. Tulipani S, Álvarez-Suárez JM, Busco F, Bompadre S, Quiles JL, Mezzetti B, Battino M (2011) Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chem 128(1):180–186. doi:10.1016/j.foodchem.2011.03.025

    Article  CAS  Google Scholar 

  21. Pellegrini N, Salvatore S, Valtueña S, Bedogni G, Porrini M, Pala V, Del Río D, Sieri S, Miglio C, Krogh V, Zavaroni I, Brighenti F (2007) Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr 137(1):93–98

    CAS  Google Scholar 

  22. Rautiainen S, Serafini M, Morgenstern R, Prior RL, Wolk A (2008) The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am J Clin Nutr 87(5):1247–1253

    CAS  Google Scholar 

  23. Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302. doi:10.1021/jf0502698

    Article  CAS  Google Scholar 

  24. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  25. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856. doi:10.1021/jf030723c

    Article  CAS  Google Scholar 

  26. Cade JE, Burley VJ, Wam DL, Thompson RL, Margetts BM (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17(1):5–22. doi:10.1079/NRR200370

    Article  CAS  Google Scholar 

  27. Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, Riboli E, Ferrari P, Carroll RJ (2002) Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr 5(6a):915–923. doi:10.1079/PHN2002383

    Article  Google Scholar 

  28. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and foods samples. J Agric Food Chem 51(11):3273–3279. doi:10.1021/jf0262256

    Article  CAS  Google Scholar 

  29. Fossati P, Prencipe P, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid-4-aminophenazone chromogenic system in direct enzymic assay of uric-acid in serum and urine. Clin Chem 26(2):227–231

    CAS  Google Scholar 

  30. De la Fuente-Arrillaga C, Vázquez Ruíz Z, Bes-Rastrollo M, Sampson L, Martínez-González MA (2010) Reproducibility of an FFQ validated in Spain. Public Health Nutrition 13(9):1364–1372. doi:10.1017/S1368980009993065

    Article  Google Scholar 

  31. Ruíz López MD, Artacho Martín-Lagos R (2013) Assessment program diets. Teaching innovation projects 2006 and 2013. University of Granada. http://farmacia.ugr.es/mdruiz2013/index.php. Accessed Nov 2014

  32. Olthof MR, Hollman PCH, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71

    CAS  Google Scholar 

  33. Institute of Medicine of the National Academies, Food and Nutrition Board: dietary reference intakes: for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (2005) Washington DC. The National Academies Press, Chapter 5, pp 107–264. http://www.nap.edu/openbook.php?record_id=10490&page=R1. Accessed Feb 2015

  34. Willet WC, Howe GR, Kushi L (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S–1228S

    Google Scholar 

  35. Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26(2):170–181

    Article  CAS  Google Scholar 

  36. Khalil A, Gaudreau P, Cherki M, Wagner R, Tessier DM, Fulop T, Shatenstein B (2011) Antioxidant-rich food intakes and their association with blood total antioxidant status and vitamin C and E levels in community-dwelling seniors from the Quebec longitudinal study NuAge. Exp Gerontol 46(6):475–481. doi:10.1016/j.exger.2011.02.002

    Article  CAS  Google Scholar 

  37. Wang Y, Yang M, Lee SG, Davis CG, Kenny A, Koo SI, Chun OK (2012) Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J Nutr Biochem 23(12):1725–1731. doi:10.1016/j.nutbio.2011.12.004

    Article  CAS  Google Scholar 

  38. Kim DO, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50(13):3713–3717. doi:10.1021/jf0200071c

    Article  CAS  Google Scholar 

  39. Record IR, Dreosti IE, McInerney JK (2001) Changes in plasma antioxidant status following consumption of diets high or low in fruit and vegetables or following dietary supplementation with and antioxidant mixture. Br J Nutr 85(4):459–464. doi:10.1079/BJN2000292

    Article  CAS  Google Scholar 

  40. Pitsavos C, Panagiotakos BP, Tzima N, Chrysohoou C, Economou M, Zampelas A, Stefanidis C (2005) Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: the ATTICA study. Am J Clin Nutr 82(3):694–699

    CAS  Google Scholar 

  41. Zamora-Ros R, Serafini M, Estruch R, Lamuela-Raventós RM, Martínez-González MA, Salas-Salvadó J, Fiol M, Lapetra J, Arós F, Covas MI, Andrés-Lacueva C (2013) Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: evidence for a mechanism of antioxidant tuning. Nutr Metab Cardiovasc Dis 23(12):1167–1174. doi:10.1016/j.numecd.2012.12.008

    Article  CAS  Google Scholar 

  42. Kolomvotsou AI, Rallidis LS, Mountzouris KC, Lekakis J, Koutelidakis A, Efstathiou S, NanaAnastasiou M, Zampelas A (2013) Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur J Nutr 52(1):37–48. doi:10.1007/s00394-011-0283-3

    Article  CAS  Google Scholar 

  43. Lettieri-Barbato D, Tomei F, Sancini A, Morabito G, Serafini M (2013) Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr 109(9):1544–1556. doi:10.1017/S0007114513000263

    Article  CAS  Google Scholar 

  44. Ferreira-Barbosa KB, Pinheiro-Volp AC, Marques-Rocha JL, Rocha-Ribeiro SM, Navarro-Blasco I, Zulet MA, Martínez JA, Bressan J (2014) Low energy and carbohydrate intake associated with higher total antioxidant capacity in apparently healthy adults. Nutrition 30(11–12):1349–1354. doi:10.1016/j.nut.2014.03.031

    Article  Google Scholar 

  45. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24(10):851–874. doi:10.1016/j.nutres.2004.07.005

    Article  CAS  Google Scholar 

  46. The National Academies of Sciences, Engineering, Medicine, Institute of Medicine (2010) Dietary reference intakes tables and application. IOP Publishing Physics Web. http://iom.nationalacademies.org/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx. Accessed Jan 2015

  47. Martínez-Álvarez J, Izquierdo-Pulido M (2005) La capacidad antioxidante de la dieta española, la “rueda de los alimentos” antioxidantes [The antioxidant capacity of the Spanish diet, the “food wheel”]. Madrid: Sociedad Española de Dietética y Ciencias de la Alimentación, pp 1–24. http://www.nutricion.org/recursos_y_utilidades/PDF/Instrucciones_Rueda_Antiox.pdf. Accessed 7 Jan 2015

  48. Saura-Calixto F, Goñi I (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 94(3):442–447. doi:10.1016/j.foodchem.2004.11.033

    Article  CAS  Google Scholar 

  49. Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T, Chirlaque MD, Dorronsoro M, Jakszyn P, Larrañaga N, Martínez C, Navarro C, Quirós JR, Sánchez MJ, Tormo MJ, González CA (2007) Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPICSpain). Am J Clin Nutr 85(6):1634–1642

    CAS  Google Scholar 

  50. Pérez C, Aranceta J, Salvador G, Varela-Moreiras G (2015) Food frequency questionnaires. Nutr Hosp 31(Suppl 3):49–56. doi:10.3305/nh.2015.31.sup3.8751

    Google Scholar 

  51. Salvador G, Serra-Majem L, Ribas-Barba L (2015) What and how much do we eat? 24-hour dietary recall method. Nutr Hosp 31(Suppl 3):46–48. doi:10.3305/nh.2015.31.sup3.8750

    Google Scholar 

  52. Michels KB, Welch AA, Luben R, Bingham SA, Day NE (2005) Measurement of fruit and vegetable consumption with diet questionnaires and implications for analyses and interpretation. Am J Epidemiol 161(10):987–994. doi:10.1093/aje/kwi115

    Article  Google Scholar 

  53. Marks GC, Hughes MC, van der Pols JC (2006) Relative validity of food intake estimates using a food frequency questionnaire is associated with sex, age, and other personal characteristics. J Nutr 136(2):459–465

    CAS  Google Scholar 

  54. Delgado-Andrade C, Morales FJ (2005) Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J Agric Food Chem 53:1403–1407

    Article  CAS  Google Scholar 

  55. Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42(4):1097–1109

    Article  CAS  Google Scholar 

  56. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242S

    CAS  Google Scholar 

  57. Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 66(18):2264–2280. doi:10.1016/j.phytochem.2005.03.025

    Article  CAS  Google Scholar 

  58. Al-Delaimy WK, Jansen EHJM, Peeters PHM, van der Laan JD, van Noord PAH, Boshuizen HC, van der Schouw YT, Jenab M, Ferrari P, Bueno de Mesquita HB (2006) Reliability of biomarkers or iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers 11(4):370–382. doi:10.1080/13547500600799748

    Article  CAS  Google Scholar 

  59. Cao G, Sofic E, Prior RL (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431

    Article  CAS  Google Scholar 

  60. Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705

    Article  CAS  Google Scholar 

  61. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026–4037

    Article  CAS  Google Scholar 

  62. Sánchez-Moreno C, Cao G, Ou B, Prior RL (2003) Anthocyanin and proanthocyanidin content in selected white and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from highbush blueberry. J Agric Food Chem 51:4889–4896

    Article  Google Scholar 

  63. Chun OK, Chung S, Song W (2007) Estimated dietary flavonoid intakes and major food sources of U.S. adults. J Nutr 137:1244–1252

    CAS  Google Scholar 

  64. Floegel A, Kim DO, Chung SJ, Song WO, Fernandez ML, Bruno RS, Koo SI, Chun OK (2010) Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int J Food Sci Nutr 61(6):600–623

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the volunteers who made the study possible through their participation and collaboration. This paper and results presented constitute part of the C.J. Carrión-García’s Doctoral Thesis performed in the Nutrition and Food Science Doctorate Program of the University of Granada. This study was supported by a grant from Health Research Fund (FIS), Acción Estratégica en Salud, of the Spanish Ministry of Economy and Competitiveness (PI12/00002), co-funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Guerra-Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrión-García, C.J., Guerra-Hernández, E.J., García-Villanova, B. et al. Non-enzymatic antioxidant capacity (NEAC) estimated by two different dietary assessment methods and its relationship with NEAC plasma levels. Eur J Nutr 56, 1561–1576 (2017). https://doi.org/10.1007/s00394-016-1201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1201-5

Keywords

Navigation