Skip to main content

Advertisement

Log in

Effect of olive cultivar on bioaccessibility and antioxidant activity of phenolic fraction of virgin olive oil

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aim

This study aims to characterize the phenolic profile and antioxidant capacity of seven monovarietal virgin olive oils (VOOs) and evaluate their in vitro gastrointestinal stability.

Methods

‘Picual’, ‘Blanqueta’, ‘Sevillana’, ‘Habichuelero’, and ‘Chetoui’ olive cultivars were selected for VOO extraction. The oils were subjected to in vitro digestion. The recovery index (RI) of phenolic compounds after each digestion step and the bioaccessibility index (BI) were evaluated. In addition, the antioxidant activity of the bioaccessible fraction (BF) of VOOs was determined by DPPH, ABTS, and ORAC assays, as well as by studying the intracellular reactive oxygen species in Caco-2 cells.

Results

Differences were found in the composition of phenolic compounds in VOOs depending on cultivars. During the digestive process, important losses of phenolic compounds were observed between the buccal and duodenal steps, unlike HTy and Ty, which presented increased recovery due to the hydrolysis of secoiridoid derivatives. Differences in the bioaccessibility of phenolic compounds were found between varieties of VOOs. ‘Sevillana’ VOO had the highest total bioaccessibility (36%), followed by the ‘Picual’ (19%), ‘Chetoui’ (17%), ‘Habichuelero’ (10%), and ‘Blanqueta’ (8%) varieties. The BF of all the varieties of VOO showed similar radical ABTS scavenging capacity, ‘Chetoui’, and ‘Blanqueta’-BF having the highest radical DPPH scavenging capacity, and ‘Habichuelero’ and ‘Picual’-BF showing protective effects against the peroxyl radical measured by ORACFL assay. All VOO-BFs presented decreases in ROS levels in Caco-2 cells.

Conclusions

Our results suggest differences in the bioaccessibility of phenolics from diverse VOO varieties, which could lead to different biological properties. Therefore, this study represents a first step toward the development of novel dietary strategies focusing on the phenolic supplementation of different VOOs to preserve human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3,4-DHPEA:

Hydroxytyrosol

3,4-DHPEA-EDA:

Dialdehydic form of elenoic acid linked to HTy

3,4-DHPEA-EA:

Aldehydic form of elenoic acid linked to HTy

3,4-DHPEA-AC:

HTy acetate

AAPH:

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

AUC:

Fluorescence decay curve

BI:

Bioaccessibility index

BF:

Bioaccessible fraction

DCFH-DA:

2,7-Dichloroflurosceindiacetate

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FL:

Fluorescein

HTy:

Hydroxytyrosol

LA:

Ligustroside aglycone

LDL:

Low density lipoprotein

MEM:

Iron-free medium

OA:

Oleuropein aglycone

Op:

Oily phase of digestion

p-DHPEA:

Tyrosol

p-DHPEA-EDA:

Dialdehydic form of elenoic acid linked to Ty

p-DHPEA-EA:

Aldehydic form of elenoic acid linked to Ty

p-DHPEA-AC:

Ty acetate

RI:

Recovery index

ROS:

Reactive oxygen species

RSA:

Radical scavenging activity

TAG:

Triacylglycerols

TE:

Trolox equivalents

TOC:

α-Tochopherol or vitamin E

Ty:

Tyrosol

VOO:

Virgin olive oil

Wp:

Aqueous phase of digestion

References

  1. López-Miranda J, Pérez-Jiménez F, Ros E, De Caterina R, Badimón L, Covas MI, Escrich E, Ordovás JM, Soriguer F, Abiá R, de la Lastra CA, Battino M, Corella D, Chamorro-Quirós J, Delgado-Lista J, Giugliano D, Esposito K, Estruch R, Fernandez-Real JM, Gaforio JJ, La Vecchia C, Lairon D, López-Segura F, Mata P, Menéndez JA, Muriana FJ, Osada J, Panagiotakos DB, Paniagua JA, Pérez-Martinez P, Perona J, Peinado MA, Pineda-Priego M, Poulsen HE, Quiles JL, Ramírez-Tortosa MC, Ruano J, Serra-Majem L, Solá R, Solanas M, Solfrizzi V, de la Torre-Fornell R, Trichopoulou A, Uceda M, Villalba-Montoro JM, Villar-Ortiz JR, Visioli F, Yiannakouris N (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20:284–294

    Article  PubMed  Google Scholar 

  2. Frankel EN (2011) Nutritional and biological properties of extra virgin olive oil. J Agric Food Chem 59:785–792

    Article  CAS  PubMed  Google Scholar 

  3. Mateos R, Espartero JL, Trujillo M, Ríos JJ, León-Camacho M, Alcudia F, Cert A (2001) Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J Agric Food Chem 49:2185–2192

    Article  CAS  PubMed  Google Scholar 

  4. Cicerale S, Conlan XA, Sinclair A, Keast SJ (2009) Chemistry and health of olive oil phenolics. Crit Rev Food Sci Nutr 49:218–236

    Article  CAS  PubMed  Google Scholar 

  5. García-González DL, Tena N, Aparicio R (2010) Quality characterization of the new virgin olive oil var. Sikitita by phenols and volatile compounds. J Agric Food Chem 58:8357–8364

    Article  CAS  PubMed  Google Scholar 

  6. Sánchez de Medina V, Priego-Capote F, de Castro MDL (2015) Characterization of monovarietal virgin olive oils by phenols profiling. Talanta 132:424–432

    Article  CAS  PubMed  Google Scholar 

  7. Gómez-Rico A, Fregapane G, Salvador MD (2008) Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res Int 41:433–440

    Article  CAS  Google Scholar 

  8. Mateos R, Trujillo M, Perez-Camino MC, Moreda W, Cert A (2005) Relationships between oxidative stability, triacylglycerol composition, and antioxidant content in olive oil matrices. J Agric Food Chem 53:5766–5771

    Article  CAS  PubMed  Google Scholar 

  9. Dell’Agli M, Maschi O, Galli GV, Fagnani R, Dal Cero E, Caruso D, Bosisio E (2008) Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr 99:945–951

    PubMed  Google Scholar 

  10. Covas MI, de la Torre K, Farré-Albaladejo M, Kaikkonen J, Fitó M, López-Sabater C, Pujadas-Bastardes MA, Joglar J, Weinbrenner T, Lamuela-Raventós RM, de la Torre R (2006) Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Rad Biomed 40:608–616

    Article  CAS  Google Scholar 

  11. Bitler CM, Viale TM, Damaj B, Crea R (2005) Hydrolyzed olive vegetation water in mice has anti-inflammatory activity 1. J Nutr 135:1475–1479

    Article  CAS  PubMed  Google Scholar 

  12. Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18:98–112

    Article  CAS  PubMed  Google Scholar 

  13. Rodríguez-Ramiro I, Martín MÁ, Ramos S, Bravo L, Goya L (2011) Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress. Toxicology 288:43–48

    Article  CAS  PubMed  Google Scholar 

  14. Warleta F, Quesada CS, Campos M, Allouche Y, Beltrán G, Gaforio JJ (2011) Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients 3:839–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Polzonetti V, Egidi D, Vita A, Vincenzetti S, Natalini P (2004) Involvement of oleuropein in (some) digestive metabolic pathways. Food Chem 88:11–15

    Article  CAS  Google Scholar 

  16. Manna C, Galletti P, Maisto G, Cucciolla V, D’Angelo S, Zappia V (2000) Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:341–344

    Article  CAS  PubMed  Google Scholar 

  17. Tuck KL, Freeman MP, Hayball PJ, Stretch GL, Stupans I (2001) The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr 131:1993–1996

    Article  CAS  PubMed  Google Scholar 

  18. Pinto J, Paiva-Martins F, Corona G, Debnam ES, Oruna-Concha JM, Vauzour D, Gordon MH, Spencer JPE (2011) Absorption and metabolism of olive oil secoiridoids in the small intestine. Br J Nutr 105:1607–1618

    Article  CAS  PubMed  Google Scholar 

  19. Pereira-Caro G, Sarriá B, Madrona A, Espartero JL, Escuderos ME, Bravo L, Mateos R (2012) Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. Int J Food Sci Nutr 63:703–707

    Article  CAS  PubMed  Google Scholar 

  20. Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, Caruso D (2000) Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett 468:159–160

    Article  CAS  PubMed  Google Scholar 

  21. Miró-Casas E, Albadalejo MF, Covas MI, Fitó M, Lamuela-Raventós RM, de la Torre-Fornell R (2001) Tyrosol bioavailability in humans after ingestion of virgin olive oil. Clin Chem 47:341–343

    PubMed  Google Scholar 

  22. Vissers MN, Zock PL, Roodenburg JC, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417

    Article  CAS  PubMed  Google Scholar 

  23. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s

    Article  CAS  PubMed  Google Scholar 

  24. Rubió L, Valls R-, MacIà A, Pedret A, Giralt M, Romero M-, De La Torre R, Covas M-, Solà R, Motilva M- (2012) Impact of olive oil phenolic concentration on human plasmatic phenolic metabolites. Food Chem 135:2922–2929

    Article  CAS  PubMed  Google Scholar 

  25. Contesini FJ, de Castro RJS, Júnior JVM, Teixeira CB (2012) Human metabolism of polyphenols from extra virgin olive oil. In: Olive Consumption and Health, p 249–258

  26. Corona G, Spencer JPE, Dessì MA (2009) Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract. Toxicol Ind Health 25:285–293

    Article  CAS  PubMed  Google Scholar 

  27. Soler A, Romero MP, Macià A, Saha S, Furniss CSM, Kroon PA, Motilva MJ (2010) Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chem 119:703–714

    Article  CAS  Google Scholar 

  28. Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJM, Sips AJAM (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. ‎Food Chem Toxicol 43:31–40

    Article  CAS  PubMed  Google Scholar 

  29. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287

    Article  CAS  PubMed  Google Scholar 

  30. Suárez M, Romero MP, Macià A, Valls RM, Fernández S, Solà R, Motilva MJ (2009) Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography–tandem mass spectrometry. J Chromatogr B 877:4097–4106

    Article  CAS  Google Scholar 

  31. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Tech 28:25–30

    Article  CAS  Google Scholar 

  32. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. FRBM 26:1231–1237

    Article  CAS  Google Scholar 

  33. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  CAS  PubMed  Google Scholar 

  34. Sánchez-Quesada C, López-Biedma A, Gaforio JJ (2015) The differential localization of a methyl group confers a different anti-breast cancer activity to two triterpenes present in olives. Food Funct 6:249–256

    Article  CAS  PubMed  Google Scholar 

  35. Lozano-Sánchez J, Segura-Carretero A, Menendez JA, Oliveras-Ferraros C, Cerretani L, Fernández-Gutiérrez A (2010) Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. J Agric Food Chem 58:9942–9955

    Article  CAS  PubMed  Google Scholar 

  36. Salvador MD, Aranda F, Fregapane G (2001) Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality: a study of four successive crop seasons. Food Chem 73:45–53

    Article  CAS  Google Scholar 

  37. Skevin D, Rade D, Strucelj D, Mokrovcak Z, Nederal S, Bencic D (2003) The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur J Lipid Sci Technol 105:536–541

    Article  CAS  Google Scholar 

  38. Kamiloglu S, Capanoglu E (2013) Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). Int J Food Sci Technol 48:2621–2629

    Article  CAS  Google Scholar 

  39. Versantvoort CHM, Rompelberg CJM, Sips AJAM (2000) Report: Mothodologies to study human intestinal absortion. A review. National Institute for Public Health and the Enviroment. RIVM 630030001

  40. Versantvoort CHM, Van de Kamp E, Rompelberg CJM (2004). Report: development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. RIVM 320102002

  41. Bermúdez-Soto M-, Tomás-Barberán F-, García-Conesa M- (2007) Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem 102:865–874

    Article  CAS  Google Scholar 

  42. Coates EM, Popa G, Gill CIR, McCann MJ, McDougall GJ, Stewart D, Rowland I (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinog 6:4. doi:10.1186/1477-3163-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dinnella C, Minichino P, D’Andrea AM, Monteleone E (2007) Bioaccessibility and antioxidant activity stability of phenolic compounds from extra-virgin olive oils during in vitro digestion. J Agric Food Chem 55:8423–8429

    Article  CAS  PubMed  Google Scholar 

  44. Chen G-, Chen S-, Zhao Y-, Luo C-, Li J, Gao Y- (2014) Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind Crops Prod 57:150–157

    Article  CAS  Google Scholar 

  45. Corona G, Tzounis X, Dessì MA, Deiana M, Debnam ES, Visioli F, Spencer JPE (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40:647–658

    Article  CAS  PubMed  Google Scholar 

  46. Quintero-Flórez A, Sánchez-Ortiz A, Gaforio Martínez JJ, Jiménez Márquez A, Beltrán Maza G (2015) Interaction between extra virgin olive oil phenolic compounds and mucin. Eur J Lipid Sci Technol 117:1569–1577

    Article  CAS  Google Scholar 

  47. Carey MC, Cohen DE (1995) Update on physical state of bile. Ital J Gastroenterol 27:92–100

    CAS  PubMed  Google Scholar 

  48. Ortega N, Reguant J, Romero M-, Macià A, Motilva M- (2009) Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agric Food Chem 57:5743–5749

    Article  CAS  PubMed  Google Scholar 

  49. Mosele JI, Macià A, Romero M-, Motilva M-, Rubió L (2015) Application of in vitro gastrointestinal digestion and colonic fermentation models to pomegranate products (juice, pulp and peel extract) to study the stability and catabolism of phenolic compounds. J Funct Foods 14:529–540

    Article  CAS  Google Scholar 

  50. Soler-Rivas C, Marín FR, Santoyo S, García-Risco MR, Señoráns FJA, Reglero G (2010) Testing and enhancing the in vitro bioaccessibility and bioavailability of rosmarinus officinalis extracts with a high level of antioxidant abietanes. J Agric Food Chem 58:1144–1152

    Article  CAS  PubMed  Google Scholar 

  51. Rubió L, Macià A, Castell-Auví A, Pinent M, Blay MT, Ardévol A, Romero M-, Motilva M- (2014) Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccessibility and bioavailability assessed by in vitro digestion and cell models. Food Chem 149:277–284

    Article  CAS  PubMed  Google Scholar 

  52. Seiquer I, Rueda A, Olalla M, Cabrera-Vique C (2015) Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem 188:496–503

    Article  CAS  PubMed  Google Scholar 

  53. Saura-Calixto F, Serrano J, Goñi I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 101:492–501

    Article  CAS  Google Scholar 

  54. Sp Borriello, Kdr Setchell, Axelson M, Am Lawson (1985) Production and metabolism of lignans by the human faecal flora. J Appl Bacteriol 58:37–43

    Article  Google Scholar 

  55. Glitsø LV, Mazur WM, Adlercreutz H, Wähälä K, Mäkelä T, Sandström B, Bach Knudsen KE (2000) Intestinal metabolism of rye lignans in pigs. Br J Nutr 84:429–437

    PubMed  Google Scholar 

  56. Wang L (2002) Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B Biomed Anal Technol Biomed Life Sci 777:289–309

    Article  CAS  Google Scholar 

  57. Sung M-, Lautens M, Thompson LU (1998) Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer Res 18:1405–1408

    CAS  PubMed  Google Scholar 

  58. Moskaug JO, Carlsen H, Myhrstad MC, Blomhoff R (2005) Polyphenols and glutathione synthesis regulation. Am J Clin Nutr 81:277S–283S

    Article  CAS  PubMed  Google Scholar 

  59. Pastoriza S, Delgado-Andrade C, Haro A, Rufián-Henares JA (2011) A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chem 129:1926–1932

    Article  CAS  Google Scholar 

  60. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644

    Article  CAS  PubMed  Google Scholar 

  61. Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro GF (1054) Morozzi G (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr 1–2:113–127

    Google Scholar 

  62. Baldioli M, Servili M, Perretti G, Montedoro GF (1996) Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J Am Oil Chem Soc 73:1589–1593

    Article  CAS  Google Scholar 

  63. Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, Selvaggini R, Montedoro G (2009) Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 17:76–84

    Article  CAS  PubMed  Google Scholar 

  64. Lavelli V (2002) Comparison of the antioxidant activities of extra virgin olive oils. J Agric Food Chem 50:7704–7708

    Article  CAS  PubMed  Google Scholar 

  65. Frankel EN, Meyer AS (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941

    Article  CAS  Google Scholar 

  66. Manna C, D’Angelo S, Migliardi V, Loffredi E, Mazzoni O, Morrica P, Galletti P, Zappia V (2002) Protective effect of the phenolic fraction from virgin olive oils against oxidative stress in human cells. J Agric Food Chem 50:6521–6526

    Article  CAS  PubMed  Google Scholar 

  67. Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Malorni W, Masella R (1999) Tyrosol, the major olive oil biophenol, protects against oxidized-LDL- induced injury in Caco-2 cells. J Nutr 129:1269–1277

    Article  CAS  PubMed  Google Scholar 

  68. Nair S, Li W, Kong A-T (2007) Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin 28:459–472

    Article  CAS  PubMed  Google Scholar 

  69. Spencer JPE, Abd El Mohsen MM, Rice-Evans C (2004) Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys 423:148–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project FEDER-P10-AGR6099 of Junta de Andalucía and FEDER-INIA RTA 2010-00013-C02-01. GP-C was supported by a postdoctoral research contract “Juan de la Cierva-Incorporación” funded by the Spanish Ministry of Economy and Competitiveness (FJCI-2015-26433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica Quintero-Flórez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintero-Flórez, A., Pereira-Caro, G., Sánchez-Quezada, C. et al. Effect of olive cultivar on bioaccessibility and antioxidant activity of phenolic fraction of virgin olive oil. Eur J Nutr 57, 1925–1946 (2018). https://doi.org/10.1007/s00394-017-1475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1475-2

Keywords

Navigation