Skip to main content

Advertisement

Log in

Diet as moderator in the association of adiposity with inflammatory biomarkers among adolescents in the HELENA study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aim

Our aim is to demonstrate that a healthy diet might reduce the relation between adiposity and inflammation, whereas an unhealthy diet may increase the effect of adiposity on inflammatory biomarkers.

Methods

In 618 adolescents (13–17 years) of the European HELENA study, data were available on body composition, a set of inflammation markers, and food intake determined by a self-administered computerized 24-h recall. A 9-point Mediterranean diet score and an antioxidant-rich diet score were used as dietary parameters and tested as moderator. Total body fat was represented by the sum of six skinfold thicknesses and central adiposity by waist circumference. A set of inflammation-related biomarkers was used as outcome: a pro/anti-inflammatory interleukins ratio, TGFβ-1, C-reactive protein, TNF-α, 3 cell adhesion molecules, and 3 types of immune cells; gamma-glutamyltransferase (GGT) and homocysteine were used as cardiovascular disease risk biomarkers, and alanine transaminase (ALT) as liver dysfunction biomarker. Multiple linear regression analyses tested moderation by diet in the adiposity-inflammation association and were adjusted for age, sex, country, puberty, socioeconomic status.

Results

Both the Mediterranean and antioxidant-rich diet, and overall and central adiposity, were important in the moderation. Diet was a significant protective moderator in the effect of adiposity on the pro/anti-inflammatory interleukins ratio, TGFβ-1, GGT, and ALT.

Conclusion

In conclusion, in some cases, a diet rich in antioxidants and essential nutrients may attenuate the concentration of inflammatory biomarkers caused by adiposity, whereas a poor diet appears to contribute to the onset of early oxidative stress signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:i–xii, 1–253

  2. Moreno LA, Kersting M, de Henauw S, González-Gross M, Sichert-Hellert W, Matthys C, Mesana MI, Ross N (2005) How to measure dietary intake and food habits in adolescence: the European perspective. Int J Obes (Lond) 29(Suppl 2):S66–S77

    Google Scholar 

  3. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jönsson LS, Kolb H, Lansink M, Marcos A, Margioris A, Matusheski N, Nordmann H, O’Brien J, Pugliese G, Rizkalla S, Schalkwijk C, Tuomilehto J, Wärnberg J, Watzl B, Winklhofer-Roob BM (2011) Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 106(Suppl 3):S5–S78. https://doi.org/10.1017/S0007114511005460

    Article  CAS  Google Scholar 

  4. Calder PC (1997) n-3 polyunsaturated fatty acids and cytokine production in health and disease. Ann Nutr Metab 41(4):203–234

    Article  CAS  PubMed  Google Scholar 

  5. Ferrari M, Cuenca-García M, Valtueña J, Moreno LA, Censi L, González-Gross M, Androutsos O, Gilbert CC, Huybrechts I, Dallongeville J, Sjöström M, Molnar D, De Henauw S, Gómez-Martínez S, de Moraes AC, Kafatos A, Widhalm K, Leclercq C, Group HS (2015) Inflammation profile in overweight/obese adolescents in Europe: an analysis in relation to iron status. Eur J Clin Nutr 69(2):247–255. https://doi.org/10.1038/ejcn.2014.154

    Article  CAS  PubMed  Google Scholar 

  6. Steene-Johannessen J, Kolle E, Reseland JE, Anderssen SA, Andersen LB (2010) Waist circumference is related to low-grade inflammation in youth. Int J Pediatr Obes 5(4):313–319. https://doi.org/10.3109/17477160903497035

    Article  PubMed  Google Scholar 

  7. Galcheva SV, Iotova VM, Yotov YT, Bernasconi S, Street ME (2011) Circulating proinflammatory peptides related to abdominal adiposity and cardiometabolic risk factors in healthy prepubertal children. Eur J Endocrinol 164(4):553–558. https://doi.org/10.1530/EJE-10-1124

    Article  CAS  PubMed  Google Scholar 

  8. O’Keefe JH, Gheewala NM, O’Keefe JO (2008) Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 51(3):249–255. https://doi.org/10.1016/j.jacc.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Navarro E, Funtikova AN, Fíto M, Schröder H (2015) Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol Nutr Food Res 59(1):75–93. https://doi.org/10.1002/mnfr.201400521

    Article  CAS  PubMed  Google Scholar 

  10. Connaughton RM, McMorrow AM, McGillicuddy FC, Lithander FE, Roche HM (2016) Impact of anti-inflammatory nutrients on obesity-associated metabolic-inflammation from childhood through to adulthood. Proc Nutr Soc 75(2):115–124. https://doi.org/10.1017/S0029665116000070

    Article  PubMed  Google Scholar 

  11. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the ATTICA Study. J Am Coll Cardiol 44(1):152–158. https://doi.org/10.1016/j.jacc.2004.03.039

    Article  PubMed  Google Scholar 

  12. Casas R, Sacanella E, Estruch R (2014) The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets 14(4):245–254

    Article  CAS  PubMed  Google Scholar 

  13. Schwingshackl L, Hoffmann G (2014) Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis 24(9):929–939. https://doi.org/10.1016/j.numecd.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Bonaccio M, Cerletti C, Iacoviello L, de Gaetano G (2015) Mediterranean diet and low-grade subclinical inflammation: the Moli-sani study. Endocr Metab Immune Disord Drug Targets 15(1):18–24

    Article  CAS  PubMed  Google Scholar 

  15. Root MM, McGinn MC, Nieman DC, Henson DA, Heinz SA, Shanely RA, Knab AM, Jin F (2012) Combined fruit and vegetable intake is correlated with improved inflammatory and oxidant status from a cross-sectional study in a community setting. Nutrients 4(1):29–41. https://doi.org/10.3390/nu4010029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shivappa N, Hébert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E, Marcos A, Huybrechts I (2015) Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr 113(4):665–671. https://doi.org/10.1017/S000711451400395X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lambert M, Delvin EE, Paradis G, O’Loughlin J, Hanley JA, Levy E (2004) C-reactive protein and features of the metabolic syndrome in a population-based sample of children and adolescents. Clin Chem 50(10):1762–1768. https://doi.org/10.1373/clinchem.2004.036418

    Article  CAS  PubMed  Google Scholar 

  18. McCrindle BW (2015) Cardiovascular consequences of childhood obesity. Can J Cardiol 31(2):124–130. https://doi.org/10.1016/j.cjca.2014.08.017

    Article  PubMed  Google Scholar 

  19. Moreno LA, De Henauw S, González-Gross M, Kersting M, Molnár D, Gottrand F, Barrios L, Sjöström M, Manios Y, Gilbert CC, Leclercq C, Widhalm K, Kafatos A, Marcos A, Group HS (2008) Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int J Obes (Lond) 32(Suppl 5):S4–S11. https://doi.org/10.1038/ijo.2008.177

    Article  Google Scholar 

  20. Diethelm K, Huybrechts I, Moreno L, De Henauw S, Manios Y, Beghin L, González-Gross M, Le Donne C, Cuenca-García M, Castillo MJ, Widhalm K, Patterson E, Kersting M (2014) Nutrient intake of European adolescents: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 17(3):486–497. https://doi.org/10.1017/S1368980013000463

    Article  PubMed  Google Scholar 

  21. Vereecken CA, Covents M, Matthys C, Maes L (2005) Young adolescents’ nutrition assessment on computer (YANA-C). Eur J Clin Nutr 59(5):658–667. https://doi.org/10.1038/sj.ejcn.1602124

    Article  CAS  PubMed  Google Scholar 

  22. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, Gnardellis C, Lagiou P, Polychronopoulos E, Vassilakou T, Lipworth L, Trichopoulos D (1995) Diet and overall survival in elderly people. BMJ 311(7018):1457–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348(26):2599–2608. https://doi.org/10.1056/NEJMoa025039

    Article  PubMed  Google Scholar 

  24. Trichopoulou A (2004) Traditional Mediterranean diet and longevity in the elderly: a review. Public Health Nutr 7(7):943–947

    Article  PubMed  Google Scholar 

  25. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagy E, Vicente-Rodriguez G, Manios Y, Béghin L, Iliescu C, Censi L, Dietrich S, Ortega FB, De Vriendt T, Plada M, Moreno LA, Molnar D, Group HS (2008) Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond) 32(Suppl 5):S58–S65. https://doi.org/10.1038/ijo.2008.184

    Article  Google Scholar 

  27. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51(3):170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. González-Gross M, Breidenassel C, Gómez-Martínez S, Ferrari M, Béghin L, Spinneker A, Díaz LE, Maiani G, Demailly A, Al-Tahan J, Albers U, Wärnberg J, Stoffel-Wagner B, Jiménez-Pavón D, Libersa C, Pietrzik K, Marcos A, Stehle P (2008) Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int J Obes (Lond) 32(Suppl 5):S66–S75. https://doi.org/10.1038/ijo.2008.185

    Article  CAS  Google Scholar 

  29. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, Teeling JL, Blaak EE, Fenech M, Vauzour D, McArdle HJ, Kremer BH, Sterkman L, Vafeiadou K, Benedetti MM, Williams CM, Calder PC (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114(7):999–1012. https://doi.org/10.1017/S0007114515002093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e701–770. https://doi.org/10.1016/j.jaci.2010.11.050

    Article  CAS  PubMed  Google Scholar 

  31. Targher G (2010) Elevated serum gamma-glutamyltransferase activity is associated with increased risk of mortality, incident type 2 diabetes, cardiovascular events, chronic kidney disease and cancer—a narrative review. Clin Chem Lab Med 48(2):147–157. https://doi.org/10.1515/CCLM.2010.031

    Article  CAS  PubMed  Google Scholar 

  32. Fraser A, Longnecker MP, Lawlor DA (2007) Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999–2004. Gastroenterology 133(6):1814–1820. https://doi.org/10.1053/j.gastro.2007.08.077

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Gomez D, Ortega FB, Ruiz JR, Vicente-Rodriguez G, Veiga OL, Widhalm K, Manios Y, Béghin L, Valtueña J, Kafatos A, Molnar D, Moreno LA, Marcos A, Castillo MJ, Sjöström M, Group Hs (2011) Excessive sedentary time and low cardiorespiratory fitness in European adolescents: the HELENA study. Arch Dis Child 96(3):240–246. https://doi.org/10.1136/adc.2010.187161

    Article  PubMed  Google Scholar 

  34. Vanhelst J, Béghin L, Turck D, Gottrand F (2011) New validated thresholds for various intensities of physical activity in adolescents using the Actigraph accelerometer. Int J Rehabil Res 34(2):175–177. https://doi.org/10.1097/MRR.0b013e328340129e

    Article  PubMed  Google Scholar 

  35. Jiménez Pavón D, Ortega FP, Ruiz JR, España Romero V, García Artero E, Moliner Urdiales D, Gómez Martínez S, Vicente Rodríguez G, Manios Y, Béghin L, Répasy J, Sjöstrom M, Moreno LA, González Gross M, Castillo MJ, Group HS (2010) Socioeconomic status influences physical fitness in European adolescents independently of body fat and physical activity: the HELENA study. Nutr Hosp 25(2):311–316

    PubMed  Google Scholar 

  36. Hayes AF, Rockwood NJ (2016) Regression-based statistical mediation and moderation analysis in clinical research: observations, recommendations, and implementation. Behav Res Ther. https://doi.org/10.1016/j.brat.2016.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hayes A (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford Publications, New York. ISBN 978-1-60918-230-4

    Google Scholar 

  38. Dai J, Miller AH, Bremner JD, Goldberg J, Jones L, Shallenberger L, Buckham R, Murrah NV, Veledar E, Wilson PW, Vaccarino V (2008) Adherence to the mediterranean diet is inversely associated with circulating interleukin-6 among middle-aged men: a twin study. Circulation 117(2):169–175. https://doi.org/10.1161/CIRCULATIONAHA.107.710699

    Article  CAS  PubMed  Google Scholar 

  39. Hoebeeck LI, Rietzschel ER, Langlois M, De Buyzere M, De Bacquer D, De Backer G, Maes L, Gillebert T, Huybrechts I (2011) The relationship between diet and subclinical atherosclerosis: results from the Asklepios Study. Eur J Clin Nutr 65(5):606–613. https://doi.org/10.1038/ejcn.2010.286

    Article  CAS  PubMed  Google Scholar 

  40. Dinarello CA (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112(6 Suppl):321S–329S

    Google Scholar 

  41. Calder PC (1998) Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31(4):467–490

    Article  CAS  PubMed  Google Scholar 

  42. Giugliano D, Ceriello A, Esposito K (2006) The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol 48(4):677–685. https://doi.org/10.1016/j.jacc.2006.03.052

    Article  CAS  PubMed  Google Scholar 

  43. Kiecolt-Glaser JK (2010) Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom Med 72(4):365–369. https://doi.org/10.1097/PSY.0b013e3181dbf489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Border WA, Ruoslahti E (1992) Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest 90(1):1–7. https://doi.org/10.1172/JCI115821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasegawa T, Yoneda M, Nakamura K, Makino I, Terano A (2001) Plasma transforming growth factor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study. Aliment Pharmacol Ther 15(10):1667–1672

    Article  CAS  PubMed  Google Scholar 

  46. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, Basdevant A, Guerre-Millo M, Poitou C, Zucker JD, Bedossa P, Clément K (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59(11):2817–2825. https://doi.org/10.2337/db10-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reggio S, Rouault C, Poitou C, Bichet JC, Prifti E, Bouillot JL, Rizkalla S, Lacasa D, Tordjman J, Clément K (2016) Increased basement membrane components in adipose tissue during obesity: links with TGFβ and metabolic phenotypes. J Clin Endocrinol Metab 101(6):2578–2587. https://doi.org/10.1210/jc.2015-4304

    Article  CAS  PubMed  Google Scholar 

  48. Parola M, Muraca R, Dianzani I, Barrera G, Leonarduzzi G, Bendinelli P, Piccoletti R, Poli G (1992) Vitamin E dietary supplementation inhibits transforming growth factor beta 1 gene expression in the rat liver. FEBS Lett 308(3):267–270

    Article  CAS  PubMed  Google Scholar 

  49. Koenig G, Seneff S (2015) Gamma-glutamyltransferase: a predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis Markers 2015:818570. https://doi.org/10.1155/2015/818570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee DH, Blomhoff R, Jacobs DR (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38(6):535–539

    Article  CAS  PubMed  Google Scholar 

  51. Kunutsor SK (2016) Gamma-glutamyltransferase-friend or foe within? Liver Int 36(12):1723–1734. https://doi.org/10.1111/liv.13221

    Article  CAS  PubMed  Google Scholar 

  52. Whitfield JB (2001) Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38(4):263–355. https://doi.org/10.1080/20014091084227

    Article  CAS  PubMed  Google Scholar 

  53. Mason JE, Starke RD, Van Kirk JE (2010) Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Prev Cardiol 13(1):36–41. https://doi.org/10.1111/j.1751-7141.2009.00054.x

    Article  CAS  PubMed  Google Scholar 

  54. Yamada J, Tomiyama H, Yambe M, Koji Y, Motobe K, Shiina K, Yamamoto Y, Yamashina A (2006) Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis 189(1):198–205. https://doi.org/10.1016/j.atherosclerosis.2005.11.036

    Article  CAS  PubMed  Google Scholar 

  55. Whitfield JB (2007) Serum gamma-glutamyltransferase and risk of disease. Clin Chem 53(1):1–2. https://doi.org/10.1373/clinchem.2006.080911

    Article  CAS  PubMed  Google Scholar 

  56. Wiegand S, Keller KM, Röbl M, L’Allemand D, Reinehr T, Widhalm K, Holl RW, Adipositas A-SGatGCN (2010) Obese boys at increased risk for nonalcoholic liver disease: evaluation of 16,390 overweight or obese children and adolescents. Int J Obes (Lond) 34(10):1468–1474. https://doi.org/10.1038/ijo.2010.106

    Article  CAS  Google Scholar 

  57. Marzuillo P, Grandone A, Perrone L, Miraglia Del Giudice E (2015) Understanding the pathophysiological mechanisms in the pediatric non-alcoholic fatty liver disease: The role of genetics. World J Hepatol 7(11):1439–1443. https://doi.org/10.4254/wjh.v7.i11.1439

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ahn MB, Bae WR, Han KD, Cho WK, Cho KS, Park SH, Jung MH, Suh BK (2015) Association between serum alanine aminotransferase level and obesity indices in Korean adolescents. Korean J Pediatr 58(5):165–171. https://doi.org/10.3345/kjp.2015.58.5.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC, Disease PPCotAAftSoL (2008) Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47(4):1363–1370. https://doi.org/10.1002/hep.22109

    Article  CAS  PubMed  Google Scholar 

  60. Boyraz M, Pirgon Ö, Dündar B, Çekmez F, Hatipoğlu N (2015) Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease. J Clin Res Pediatr Endocrinol 7(2):121–127. https://doi.org/10.4274/jcrpe.1749

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu FS, Liu S, Chen XM, Huang ZG, Zhang DW (2008) Effects of n-3 polyunsaturated fatty acids from seal oils on nonalcoholic fatty liver disease associated with hyperlipidemia. World J Gastroenterol 14(41):6395–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nobili V, Bedogni G, Alisi A, Pietrobattista A, Risé P, Galli C, Agostoni C (2011) Docosahexaenoic acid supplementation decreases liver fat content in children with non-alcoholic fatty liver disease: double-blind randomised controlled clinical trial. Arch Dis Child 96(4):350–353. https://doi.org/10.1136/adc.2010.192401

    Article  PubMed  Google Scholar 

  63. Rodríguez G, Moreno LA, Blay MG, Blay VA, Fleta J, Sarría A, Bueno M, Group A-ZS (2005) Body fat measurement in adolescents: comparison of skinfold thickness equations with dual-energy X-ray absorptiometry. Eur J Clin Nutr 59(10):1158–1166. https://doi.org/10.1038/sj.ejcn.1602226

    Article  PubMed  Google Scholar 

  64. Sarría A, García-Llop LA, Moreno LA, Fleta J, Morellón MP, Bueno M (1998) Skinfold thickness measurements are better predictors of body fat percentage than body mass index in male Spanish children and adolescents. Eur J Clin Nutr 52(8):573–576

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The HELENA Study was carried out with the financial support of the European Community Sixth RTD Framework Programme (Contract FOODCT-2005-007034). The writing group takes sole responsibility for the content of this article. The European Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Contributions

AA formulated the research question, has analyzed the data and wrote a draft of the paper. NM helped in formulating the research question, analyzing the data and did editing of the first draft. NM and SDH are co-supervisor and supervisor of Aline Arouca; LAM was coordinator of the HELENA project. All other authors were involved in the HELENA project (coordinator or data collection). AM was responsible for the inflammatory parameter analyses. IH developed the Mediterranean diet score. MGG was responsible for the complete blood sampling and collection. All authors have read the draft and agreed on the final version. The authors would like to thank Anke Carstensen and Petra Pickert for their contribution to the laboratory work.

Corresponding authors

Correspondence to Aline Arouca or Nathalie Michels.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arouca, A., Moreno, L.A., Gonzalez-Gil, E.M. et al. Diet as moderator in the association of adiposity with inflammatory biomarkers among adolescents in the HELENA study. Eur J Nutr 58, 1947–1960 (2019). https://doi.org/10.1007/s00394-018-1749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1749-3

Keywords

Navigation