Skip to main content

Advertisement

Log in

Association study of dietary non-enzymatic antioxidant capacity (NEAC) and colorectal cancer risk in the Spanish Multicase–Control Cancer (MCC-Spain) study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Studies attempting to link dietary non-enzymatic antioxidant activity (NEAC) and colorectal cancer (CRC) risk have reported mixed results. We examined this association in the Spanish Multicase–Control Study considering the likely influence of coffee and other dietary factors.

Methods

1718 CRC cases and 3312 matched-controls provided information about diet through a validated 140-item food frequency questionnaire. Dietary NEAC was estimated for three methods [total radical-trapping antioxidant parameters (TRAP), ferric reducing/antioxidant power (FRAP) and TEAC-ABTS] using published values of NEAC content in food, with and without coffee’s NEAC. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated through unconditional logistic regression models adjusted for lifestyle and dietary factors.

Results

Overall dietary intake of NEAC was significantly lower in cases compared to controls and associated with a significantly reduced CRC risk, in both men (ORQ5vsQ1 = 0.67, 95% CI 0.47–0.96 for FRAP) and women (ORQ5vsQ1 = 0.53, 95% CI 0.32–085 for FRAP), in multivariate models with and without the antioxidant contribution from coffee. The effect was similar for all the NEAC methods evaluated and for both colon and rectum. The association between dietary NEAC and CRC risk became non-significant when adjusting for fiber intake. However, intakes of NEAC and fiber were correlated.

Conclusion

This study indicates that intake of an antioxidant-rich plant-based diet, both with and without NEAC from coffee, is associated with decreased CRC risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Schwingshackl L, Hoffmann G (2014) Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer 135:1884–1897. https://doi.org/10.1002/ijc.28824

    Article  CAS  PubMed  Google Scholar 

  2. Møller P, Loft S (2006) Dietary antioxidants and beneficial effect on oxidatively damaged DNA. Free Radic Biol Med 41:388–415. https://doi.org/10.1016/j.freeradbiomed.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Ahn J, Sinha R, Pei Z et al (2013) Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 105:1907–1911. https://doi.org/10.1093/jnci/djt300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung S, Wu K, Giovannucci E et al (2013) Carotenoid intake and risk of colorectal adenomas in a cohort of male health professionals. Cancer Causes Control 24:705–717. https://doi.org/10.1007/s10552-013-0151-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lu M-S, Fang Y-J, Chen Y-M et al (2015) Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults: a case–control study. Eur J Nutr 54:619–628. https://doi.org/10.1007/s00394-014-0743-7

    Article  CAS  PubMed  Google Scholar 

  6. Leenders M, Leufkens AM, Siersema PD et al (2014) Plasma and dietary carotenoids and vitamins A, C and e and risk of colon and rectal cancer in the European prospective investigation into cancer and nutrition. Int J Cancer 135:2930–2939. https://doi.org/10.1002/ijc.28938

    Article  CAS  PubMed  Google Scholar 

  7. Zamora-Ros R, Barupal DK, Rothwell JA et al (2017) Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer 140:1836–1844. https://doi.org/10.1002/ijc.30582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serafini M, Del Rio D (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Rep 9:145–152. https://doi.org/10.1179/135100004225004814

    Article  CAS  PubMed  Google Scholar 

  9. Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44:711–720. https://doi.org/10.3109/10715761003758114

    Article  CAS  PubMed  Google Scholar 

  10. Carrión-García CJ, Guerra-Hernández EJ, García-Villanova B, Molina-Montes E (2016) Non-enzymatic antioxidant capacity (NEAC) estimated by two different dietary assessment methods and its relationship with NEAC plasma levels. Eur J Nutr. https://doi.org/10.1007/s00394-016-1201-5

    Article  PubMed  Google Scholar 

  11. Praud D, Parpinel M, Serafini M et al (2016) Non-enzymatic antioxidant capacity and risk of gastric cancer. Cancer Epidemiol 39:340–345. https://doi.org/10.1016/j.canep.2015.04.003

    Article  Google Scholar 

  12. Serafini M, Jakszyn P, Luján-Barroso L et al (2012) Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 131:544–554. https://doi.org/10.1002/ijc.27347

    Article  CAS  Google Scholar 

  13. Pantavos A, Ruiter R, Feskens EF et al (2015) Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam study. Int J Cancer 136:2178–2186. https://doi.org/10.1002/ijc.29249

    Article  CAS  PubMed  Google Scholar 

  14. Vece MM, Agnoli C, Grioni S et al (2015) Dietary total antioxidant capacity and colorectal cancer in the Italian epic cohort. PLoS ONE 10:1–11. https://doi.org/10.1371/journal.pone.0142995

    Article  CAS  Google Scholar 

  15. La Vecchia C, Decarli A, Serafini M et al (2013) Dietary total antioxidant capacity and colorectal cancer: a large case–control study in Italy. Int J Cancer 133:1447–1451. https://doi.org/10.1002/ijc.28133

    Article  CAS  PubMed  Google Scholar 

  16. Mekary R, Wu K, Giovannucci E et al (2011) Total antioxidant capacity intake and colorectal cancer risk in the Health Professionals Follow-up Study. Cancer Causes Control 21:1315–1321. https://doi.org/10.1007/s10552-010-9559-9.Total

    Article  Google Scholar 

  17. Lucas AL, Bosetti C, Boffetta P et al (2016) Dietary total antioxidant capacity and pancreatic cancer risk: an Italian case–control study. Br J Cancer 115:102–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delgado-Andrade C, Morales FJ (2005) Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J Agric Food Chem 53:1403–1407. https://doi.org/10.1021/jf048500p

    Article  CAS  PubMed  Google Scholar 

  19. Morales FJ, Somoza V, Fogliano V (2012) Physiological relevance of dietary melanoidins. Amino Acids 42:1097–1109. https://doi.org/10.1007/s00726-010-0774-1

    Article  CAS  PubMed  Google Scholar 

  20. Haytowitz D, Bhagwat S (2010) USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, Release 2. US Department of Agriculture, p 10–48. http://www.ars.usda.gov/ba/bhnrc/ndl

  21. Pellegrini N, Serafini M, Colombi B et al (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819. https://doi.org/10.1002/mnfr.200600067

    Article  CAS  PubMed  Google Scholar 

  22. Carlsen MH, Halvorsen BL, Holte K et al (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3. https://doi.org/10.1186/1475-2891-9-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Castano-Vinyals G, Aragones N, Perez-Gomez B et al (2016) Population-based multicase–control study in common tumors in Spain (MCC-Spain): rationale and study design. Gac Sanit 29:308–315. https://doi.org/10.1016/j.compag.2011.01.019

    Article  Google Scholar 

  24. García-Closas R, García-Closas M, Kogevinas M et al (2016) Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur J Cancer 43:1731–1740. https://doi.org/10.1016/j.ejca.2007.05.007

    Article  CAS  Google Scholar 

  25. (CESNID) C for HS in N and D (2008) Tablas de composición de alimentos CESNID. Taules de composició dels aliments CESNID

  26. Calvert C, Cade J, Barrett JH, Woodhouse A (1997) Using cross-check questions to address the problem of mis-reporting of specific food groups on Food Frequency Questionnaires. UKWCS Steering Group. United Kingdom Women’s Cohort Study Steering Group. Eur J Clin Nutr 51:708–712

    Article  CAS  PubMed  Google Scholar 

  27. Mendez MA, Popkin BM, Buckland G et al (2011) Alternative methods of accounting for underreporting and overreporting when measuring dietary intake–obesity relations. Am J Epidemiol 173:448–458. https://doi.org/10.1093/aje/kwq380

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pellegrini N, Serafini M, Salvatore S et al (2006) Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 50:1030–1038. https://doi.org/10.1002/mnfr.200600067

    Article  CAS  PubMed  Google Scholar 

  29. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S

    Article  CAS  PubMed  Google Scholar 

  30. Stone CJKC (1985) Additive splines in statistics. Proc Stat Comput Sect Am Stat Assoc 27:45–48

    Google Scholar 

  31. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/

  32. Bastide N, Morois S, Cadeau C et al (2016) Heme iron intake, dietary antioxidant capacity, and risk of colorectal adenomas in a large cohort study of French women. Cancer Epidemiol Biomark Prev 25:640–647. https://doi.org/10.1158/1055-9965.EPI-15-0724

    Article  CAS  Google Scholar 

  33. Michels KB, Welch AA, Luben R et al (2005) Measurement of fruit and vegetable consumption with diet questionnaires and implications for analyses and interpretation. Am J Epidemiol 161(10):987–994

    Article  PubMed  Google Scholar 

  34. Lettieri-Barbato D, Tomei F, Sancini A et al (2013) Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr 109:1544–1556. https://doi.org/10.1017/S0007114513000263

    Article  CAS  PubMed  Google Scholar 

  35. Leufkens AM, Van Duijnhoven FJB, Woudt SHS et al (2012) Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case–control study in the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol 175:653–663. https://doi.org/10.1093/aje/kwr418

    Article  PubMed  Google Scholar 

  36. Kouli G-M, Panagiotakos DB, Georgousopoulou EN et al (2018) J-shaped relationship between habitual coffee consumption and 10-year (2002–2012) cardiovascular disease incidence: the ATTICA study. Eur J Nutr 57:1677–1685. https://doi.org/10.1007/s00394-017-1455-6

    Article  PubMed  Google Scholar 

  37. Gunter MJ, Murphy N, Cross AJ et al (2017) Coffee drinking and mortality in 10 European countries: a multinational cohort study. Ann Intern Med 167:236–247

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the ‘Acción Transversal del Cancer’, approved by the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III, co-founded by FEDER funds—‘a way to build Europe’ (Grants PI08/1770, PI08/0533, PI08/1359, PI09/00773, PI09/01286, PI09/01903, PI09/02078, PI09/01662, PI11/01403, PI11/01889, PI11/00226, PI11/01810, PI11/02213, PI12/00488, PI12/00265, PI12/01270, PI12/00715, PI12/00150, PI14/01219, PI14/00613, PI15/00069, and PI12/00002). Support was also provided by the Fundación Marqués de Valdecilla (Grant API 10/09); the Junta de Castilla y León (Grant LE22A10-2); the Consejería de Salud of the Junta de Andalucía (2009-S0143); the Conselleria de Sanitat of the Generalitat Valenciana (Grant AP 061/10); the Recercaixa (Grant 2010ACUP 00310); the Regional Government of the Basque Country; the Consejería de Sanidad de la Región de Murcia; European Commission Grants FOOD-CT-2006-036224-HIWATE; the Spanish Association Against Cancer (AECC) Scientific Foundation; the Catalan Government DURSI (Grant 2014SGR647); the Fundación Caja de Ahorros de Asturias; the University of Oviedo; Societat Catalana de Digestologia; and COST action BM1206 Eucolongene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Molina-Montes.

Ethics declarations

Conflict of interests

None.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiano, P., Molina-Montes, E., Molinuevo, A. et al. Association study of dietary non-enzymatic antioxidant capacity (NEAC) and colorectal cancer risk in the Spanish Multicase–Control Cancer (MCC-Spain) study. Eur J Nutr 58, 2229–2242 (2019). https://doi.org/10.1007/s00394-018-1773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1773-3

Keywords

Navigation