Skip to main content
Log in

Dietary intake of specific amino acids and liver status in subjects with nonalcoholic fatty liver disease: fatty liver in obesity (FLiO) study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Identification of dietary factors involved in the development and progression of nonalcoholic fatty liver disease (NAFLD) is relevant to the current epidemics of the disease. Dietary amino acids appear to play a key role in the onset and progression of NAFLD. The aim of this study was to analyze potential associations between specific dietary amino acids and variables related to glucose metabolism and hepatic status in adults with overweight/obesity and NAFLD.

Methods

One hundred and twelve individuals from the Fatty Liver in Obesity (FLiO) study were evaluated. Liver assessment was carried out by ultrasonography, magnetic resonance imaging and analysis of biochemical parameters. Dietary amino acid intake (aromatic amino acids (AAA); branched-chain amino acids (BCAA); sulfur amino acids (SAA)) was estimated by means of a validated 137-item food frequency questionnaire.

Results

Higher consumption of these amino acids was associated with worse hepatic health. Multiple adjusted regression models confirmed that dietary AAA, BCAA and SAA were positively associated with liver fat content. AAA and BCAA were positively associated with liver iron concentration. Regarding ferritin levels, a positive association was found with BCAA. Dietary intake of these amino acids was positively correlated with glucose metabolism (glycated hemoglobin, triglyceride and glucose index) although the significance disappeared when potential confounders were included in the model.

Conclusion

These findings suggest that the consumption of specific dietary amino acids might negatively impact on liver status and, to a lesser extent on glucose metabolism in subjects with overweight/obesity and NAFLD. A control of specific dietary amino acid composition should be considered in the management of NAFLD and associated insulin resistance. NCT03183193; June 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAA:

Aromatic amino acids

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BAT:

Brown adipose tissue

BCAA:

Branched-chain amino acids

BMI:

Body mass index

CMIA:

Chemiluminescent microparticle immunoassay

CVD:

Cardiovascular diseases

ELISA:

Enzyme-linked immunosorbent assay

FFA:

Free fatty acids

FFQ:

Food frequency questionnaire

GGT:

Gamma glutamyl transferase

HbA1c:

Glycated hemoglobin

HDL-c:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostatic Model Assessment of Insulin Resistance

IDF:

International Diabetes Federation

IR:

Insulin resistance

IRS-1:

Insulin receptor substrate-1

LDL-c:

Low-density lipoprotein cholesterol

MetS:

Metabolic syndrome

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

SAA:

Sulfur amino acids

T2D:

Type 2 diabetes

TG:

Triglycerides

TyG index:

Triglyceride–glucose index

WAT:

White adipose tissue

References

  1. Chalasani N, Younossi Z, Lavine JE et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–357

    Article  PubMed  Google Scholar 

  2. Ahmed A, Wong RJ, Harrison SA (2015) Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. Clin Gastroenterol Hepato 13:2062–2070. https://doi.org/10.1016/j.cgh.2015.07.029

    Article  Google Scholar 

  3. Cantero I, Abete I, Babio N et al (2018) Dietary inflammatory index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr 37:1736–1743. https://doi.org/10.1016/j.clnu.2017.06.027

    Article  PubMed  Google Scholar 

  4. Bessone F, Razori MV, Roma MG (2019) Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 76:99–128

    Article  CAS  PubMed  Google Scholar 

  5. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64

    Article  PubMed  Google Scholar 

  6. Haas JT, Francque S, Staels B (2016) Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol 78:181–205. https://doi.org/10.1146/annurev-physiol-021115-105331

    Article  CAS  PubMed  Google Scholar 

  7. Loomba R, Abraham M, Unalp A et al (2012) Nonalcoholic steatohepatitis clinical research network. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56:943–951. https://doi.org/10.1002/hep.25772

    Article  PubMed  Google Scholar 

  8. Tessari P, Cecchet D, Cosma A et al (2011) Insulin resistance of amino acid and protein metabolism in type 2 diabetes. Clin Nutr 30:267–372. https://doi.org/10.1016/j.clnu.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  9. Seko Y, Yamaguchi K, Itoh Y (2018) The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol 11:97–102

    Article  PubMed  Google Scholar 

  10. Marin-Alejandre BA, Abete I, Cantero I et al (2019) Association between sleep disturbances and liver status in obese subjects with nonalcoholic fatty liver disease: a comparison with healthy controls. Nutrients 11:1–16

    Google Scholar 

  11. Fontana L (2018) Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat Rev Cardiol 15:566–577

    Article  PubMed  Google Scholar 

  12. Spahis S, Delvin E, Borys JM et al (2017) Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxidants Redox Signal 26:519–541. https://doi.org/10.1089/ars.2016.6776

    Article  CAS  Google Scholar 

  13. Alisi A, Carpino G, Oliveira FL et al (2017) The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications. Med Inflamm. https://doi.org/10.1155/2017/8162421

    Article  Google Scholar 

  14. Marin-Alejandre BA, Abete I, Cantero I et al (2019) The metabolic and hepatic impact of two personalized dietary strategies in subjects with obesity and nonalcoholic fatty liver disease: the fatty liver in obesity (FLiO) randomized controlled trial. Nutrients 11:2543. https://doi.org/10.3390/nu11102543

    Article  CAS  PubMed Central  Google Scholar 

  15. Schübel R, Nonnenmacher T, Sookthai D et al (2019) Similar weight loss induces greater improvements in insulin sensitivity and liver function among individuals with NAFLD compared to individuals without NAFLD. Nutrients 11:1–12

    Google Scholar 

  16. Volynets V, Machann J, Küper MA et al (2013) A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. Eur J Nutr 52:527–535. https://doi.org/10.1007/s00394012-0355-z

    Article  CAS  PubMed  Google Scholar 

  17. Recaredo G, Marin-Alejandre BA, Cantero I et al (2019) Association between different animal protein sources and liver status in obese subjects with non-alcoholic fatty liver disease: fatty liver in obesity (FLiO) study. Nutrients 11:2359. https://doi.org/10.3390/nu11102359

    Article  CAS  PubMed Central  Google Scholar 

  18. Katsagoni CN, Papatheodoridis GV, Ioannidou P et al (2018) Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: a randomised controlled clinical trial. Br J Nutr 120:164–175

    Article  CAS  PubMed  Google Scholar 

  19. Katz DL, Doughty KN, Geagan K et al (2019) Perspective: the public health case for modernizing the definition of protein quality. Adv Nutr 10:755–764

    Article  PubMed  PubMed Central  Google Scholar 

  20. Teymoori F, Asghari G, Mirmiran P et al (2017) Dietary amino acids and incidence of hypertension: a principle component analysis approach. Sci Rep 4:16838. https://doi.org/10.1038/s41598-017-17047-0

    Article  CAS  Google Scholar 

  21. Grajeda-Iglesias C, Aviram M (2018) Specific amino acids affect cardiovascular diseases and atherogenesis via protection against macrophage foam cell formation: review article. Rambam Maimonides Med J 9:3. https://doi.org/10.5041/RMMJ.10337

    Article  Google Scholar 

  22. Hanvold SE, Vinknes KJ, Bastani NE et al (2018) Plasma amino acids, adiposity, and weight change after gastric bypass surgery: are amino acids associated with weight regain? Eur J Nutr 57:2629–2637. https://doi.org/10.1007/s00394-017-1533-9

    Article  CAS  PubMed  Google Scholar 

  23. Gaggini M, Carli F, Rosso C et al (2018) Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 67:145–158. https://doi.org/10.1002/hep.29465

    Article  CAS  PubMed  Google Scholar 

  24. Toohey JI (2014) Sulfur amino acids in diet-induced fatty liver: A new perspective based on recent findings. Molecules 19:8334–8349. https://doi.org/10.3390/molecules19068334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee SS, Park SH (2014) Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 20:7392–7402

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sanyal AJ, Brunt EM, Kleiner DE et al (2011) Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54:344–353

    Article  PubMed  Google Scholar 

  27. Zulet MA, Bondia-Pons I, Abete I et al (2011) The reduction of the metabolic syndrome in Navarra-Spain (RESMENA S) study: a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. Nutr Hosp 26:16–26

    CAS  PubMed  Google Scholar 

  28. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  CAS  PubMed  Google Scholar 

  29. Acosta AM, Escalona M, Maiz A (2002) Determinación del índice de resistencia insulínica mediante HOMA en una población de la Región Metropolitana de Chile. Rev Méd Chile 130:17

    Article  Google Scholar 

  30. Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J et al (2016) Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: the Vascular-Metabolic CUN cohort. Prev Med (Baltim) 86:99–105. https://doi.org/10.1016/j.ypmed.2016.01.022

    Article  Google Scholar 

  31. Pineda N, Sharma P, Xu Q et al (2009) Measurement of hepatic lipid: High-speed T2-corrected multiecho acquisition at 1H MR spectroscopy - a rapid and accurate technique. Radiology 252:568–576. https://doi.org/10.1148/radiol.252308208488

    Article  PubMed  Google Scholar 

  32. Martin-Moreno JM, Boyle P, Gorgojo L et al (1993) Development and validation of a food frequency questionnaire in Spain. Int J Epidemiol 22:512–519

    Article  CAS  PubMed  Google Scholar 

  33. Fernández-Ballart JD, Piñol JL, Zazpe I et al (2010) Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr 103:1808–1816

    Article  PubMed  Google Scholar 

  34. Souci SW, Fachmann W, Kraut H (2008) Food Composition and Nutrition Tables. Medpharm, Swedon

    Google Scholar 

  35. Perez-Cornago A, Lopez-Legarrea P, de la Iglesia R et al (2014) Longitudinal relationship of diet and oxidative stress with depressive symptoms in patients with metabolic síndrome after following a weight loss treatment: the RESMENA project. Clin Nutr 33:1061–1067. https://doi.org/10.1016/j.clnu.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  36. Galarregui C, Zulet MA, Cantero I et al (2018) Interplay of glycemic index, glycemic load, and dietary antioxidant capacity with insulin resistance in subjects with a cardiometabolic risk profile. Int J Mol Sci 19:E3662. https://doi.org/10.3390/ijms19113662

    Article  CAS  PubMed  Google Scholar 

  37. Tricò D, Frascerra S, Baldi S et al (2019) The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes. Eur J Nutr 58:2253–2261. https://doi.org/10.1007/s00394-018-1778-y

    Article  CAS  PubMed  Google Scholar 

  38. National Research Council (US) (1989) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances Protein and Amino Acids. Recommended Dietary Allowances, Washington DC

    Google Scholar 

  39. Zhang F, Zhao S, Yan W et al (2016) Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine 13:157–167. https://doi.org/10.1016/j.ebiom.2016.10.013

    Article  PubMed  PubMed Central  Google Scholar 

  40. Isanejad M, LaCroix AZ, Thomson CA et al (2017) Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br J Nutr 117:1523–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valenzuela PL, Morales JS, Emanuele E et al (2019) Supplements with purported effects on muscle mass and strength. Eur J Nutr 58:2983–3008. https://doi.org/10.1007/s00394-018-1882-z

    Article  CAS  PubMed  Google Scholar 

  42. Jackman SR, Witard OC, Philp A et al (2017) Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Front Physiol 8:390

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beppu T, Nitta H, Hayashi H et al (2015) Effect of branched-chain amino acid supplementation on functional liver regeneration in patients undergoing portal vein embolization and sequential hepatectomy: a randomized controlled trial. J Gastroenterol 50:1197–1205. https://doi.org/10.1007/s00535-015-1067-y

    Article  CAS  PubMed  Google Scholar 

  44. Mattick JSA, Kamisoglu K, Ierapetritou MG et al (2013) Branched-chain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdiscip Rev Syst Biol Med 5:449–460. https://doi.org/10.1002/wsbm.1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honda T, Ishigami M, Luo F et al (2016) Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism 69:177–187. https://doi.org/10.1016/j.metabol.2016.12.013

    Article  CAS  Google Scholar 

  46. Takegoshi K, Honda M, Okada H et al (2017) Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget 8:18191–18205. https://doi.org/10.18632/oncotarget.15304

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cha JH, Bae SH, Kim HL et al (2013) Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis. PLoS ONE 8:e77899. https://doi.org/10.1371/journal.pone.0077899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buzzetti E, Petta S, Manuguerra R et al (2019) Evaluating the association of serum ferritin and hepatic iron with disease severity in non-alcoholic fatty liver disease. Liver Int 1:1–10

    Google Scholar 

  49. de la OV, Zazpe I, Ruiz-Canela M, (2019) Effect of branched-chain amino acid supplementation, dietary intake and circulating levels in cardiometabolic diseases: an updated review. Curr Opin Clin Nutr Metab Care. https://doi.org/10.1097/MCO.0000000000000614

    Article  Google Scholar 

  50. Ntzouvani A, Nomikos T, Panagiotakos D et al (2017) Amino acid profile and metabolic syndrome in a male Mediterranean population: a cross-sectional study. Nutr Metab Cardiovasc Dis 27:1021–1030

    Article  CAS  PubMed  Google Scholar 

  51. Ferńandez-Real JM, Mcclain D, Review MM (2015) Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38:2169–2176. https://doi.org/10.2337/dc14-3082

    Article  CAS  PubMed  Google Scholar 

  52. Britton LJ, Subramaniam VN, Crawford DHG (2016) Iron and non-alcoholic fatty liver disease. World J Gastroenterol 22:8112–8122. https://doi.org/10.3748/wjg.v22.i36.8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Modares Mousavi SR, Geramizadeh B, Anushiravani A et al (2018) Correlation between serum ferritin level and histopathological disease severity in non-alcoholic fatty liver disease. Middle East J Dig Dis 10:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  54. Britton L, Bridle K, Reiling J et al (2018) Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease. Hepatol Commun 2:644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKay A, Wilman HR, Dennis A et al (2018) Measurement of liver iron by magnetic resonance imaging in the UK Biobank population. PLoS ONE 13:1–14

    Google Scholar 

  56. Rousseau M, Guénard F, Garneau V et al (2019) Associations between dietary protein sources, plasma BCAA and short-chain acylcarnitine levels in adults. Nutrients 11:5. https://doi.org/10.3390/nu11010173

    Article  CAS  Google Scholar 

  57. Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10:723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahbub M, Yamaguchi N, Takahashi H et al (2017) Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. Sci Rep. https://doi.org/10.1038/s41598-017-17710-6

    Article  PubMed  PubMed Central  Google Scholar 

  59. van den Berg EH, Flores-Guerrero JL, Gruppen EG et al (2019) Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: Role of circulating branched-chain amino acids. Nutrients. https://doi.org/10.3390/nu11030705

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meijer AJ, Dubbelhuis PF (2004) Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun 313:397–403. https://doi.org/10.1016/j.bbrc.2003.07.012

    Article  CAS  PubMed  Google Scholar 

  61. Ruiz-Canela M, Guasch-Ferre M, Toledo E et al (2018) Plasma branched chain/ aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 61:1560–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herman MA, She P, Peroni OD et al (2010) Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem 285:11348–11356. https://doi.org/10.1074/jbc.M109.075184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoneshiro T, Wang Q, Tajima K (2019) BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572:614–619. https://doi.org/10.1038/s41586-019-1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei Y, Rector RS, Thyfault JP et al (2008) Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 14:193–199. https://doi.org/10.3748/wjg.14.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kakazu E, Sano A, Morosawa T (2019) Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease. Hepatol Res 49:860–871. https://doi.org/10.1111/hepr.13346

    Article  CAS  PubMed  Google Scholar 

  66. Cheng S, Wiklund P, Autio R et al (2015) Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0138889

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to all the participants of the study. The authors wish to express their gratitude to the Government of Navarra, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), and Fundació La Marató de TV3 for the financial support. Cristina Galarregui appreciates the predoctoral grant received from Congelados de Navarra, Government of Navarra, and Ministerio de Educación, Cultura y Deporte. Thanks are given to all the staff (www.clinicaltrials.gov; NCT03183193) for their contribution to FLiO project. Helen Hermana M. Hermsdorff and Josefina Bressan are CNPq Research Productivity fellows.

Funding

This work was supported by the Health Department of the Government of Navarra [61/2015], CIBERobn (Physiopathology of Obesity and Nutrition) [CB12/03/3002] and Fundació La Marató de TV3 [201630.10]. Cristina Galarregui was partially supported by fellowships from Congelados de Navarra, Government of Navarra, and Ministerio de Educación, Cultura y Deporte [FPU17/06330].

Author information

Authors and Affiliations

Authors

Contributions

CG: conceptualization, data curation, formal analysis, investigation, methodology, supervision, validation, visualization, roles/writing—original draft; writing—review and editing. IC: conceptualization and methodology. BAM-A: conceptualization, data curation, and methodology. JIM: conceptualization and methodology. ME: conceptualization and methodology. ABB: conceptualization and ethodology. José IH: conceptualization and methodology. VlO: conceptualization and methodology. MR-C: conceptualization and methodology. HHMH: conceptualization and methodology. JB: conceptualization and methodology. JAT: conceptualization, formal analysis, funding acquisition, methodology, and project administration. JAM: conceptualization, cata curation, formal analysis, funding acquisition, investigation, methodology, project administration, supervision, validation, visualization, roles/writing—original draft, and writing—review and editing. MAZ: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, supervision, validation, visualization, roles/writing—original draft, writing—review and editing. IA: conceptualization, data curation, formal analysis, investigation, methodology, project administration, supervision, validation, visualization, roles/writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to M. Angeles Zulet or Itziar Abete.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The present study has been approved by the Research Ethics Committee of the University of Navarra on 24 April 2015 (ref. 54/2015).and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants of the present study gave their informed consent prior to their inclusion in the study.

Availability of data and material

All data and materials support their published claims and comply with field standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galarregui, C., Cantero, I., Marin-Alejandre, B.A. et al. Dietary intake of specific amino acids and liver status in subjects with nonalcoholic fatty liver disease: fatty liver in obesity (FLiO) study. Eur J Nutr 60, 1769–1780 (2021). https://doi.org/10.1007/s00394-020-02370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02370-6

Keywords

Navigation