Skip to main content

Advertisement

Log in

One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described.

Methods

Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30–60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort.

Results

Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found.

Conclusion

Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

c-miRNAs:

Circulating-miRNAs

EVs:

Extracellular vesicles

miRNAs:

MicroRNAs

NTA:

Nanoparticle tracking analysis

qRT-PCR:

Quantitative real-time PCR

References

  1. Hayes D, Angove MJ, Tucci J, Dennis C (2016) Walnuts (Juglans regia ) chemical composition and research in human health. Crit Rev Food Sci Nutr 56:1231–1241. https://doi.org/10.1080/10408398.2012.760516

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Tsao R, Yang R et al (2007) Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). J Agric Food Chem 55:1164–1169. https://doi.org/10.1021/jf062322d

    Article  CAS  PubMed  Google Scholar 

  3. Martínez ML, Mattea MA, Maestri DM (2006) Varietal and crop year effects on lipid composition of walnut ( Juglans regia ) genotypes. J Am Oil Chem Soc 83:791–796. https://doi.org/10.1007/s11746-006-5016-z

    Article  Google Scholar 

  4. EFSA (2011) Scientific Opinion on the substantiation of health claims related to walnuts and maintenance of normal blood LDL-cholesterol concentrations (ID 1156, 1158) and improvement of endothelium-dependent vasodilation (ID 1155, 1157) pursuant to Article 13(1) of. EFSA J 9:2074. https://doi.org/10.2903/j.efsa.2011.2074

    Article  CAS  Google Scholar 

  5. Nutrition C for FS and a constituent updates—FDA completes review of qualified health claim petition for oleic acid and the risk of coronary heart disease. https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-review-qualified-health-claim-petition-oleic-acid-and-risk-coronary-heartdisease

  6. Ros E (2015) Nuts and CVD. Br J Nutr 113:S111–S120. https://doi.org/10.1017/S0007114514003924

    Article  CAS  PubMed  Google Scholar 

  7. Zibaeenezhad MJ, Farhadi P, Attar A et al (2017) Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Nutr Diabetes 7:e259. https://doi.org/10.1038/nutd.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arab L, Ang A (2015) A cross sectional study of the association between walnut consumption and cognitive function among adult us populations represented in NHANES. J Nutr Health Aging 19:284–290. https://doi.org/10.1007/s12603-014-0569-2

    Article  CAS  PubMed  Google Scholar 

  9. Toner CD (2014) Communicating clinical research to reduce cancer risk through diet: Walnuts as a case example. Nutr Res Pract 8:347–351. https://doi.org/10.4162/nrp.2014.8.4.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Gobbo LC, Falk MC, Feldman R et al (2015) Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr 102:1347–1356. https://doi.org/10.3945/ajcn.115.110965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  12. Yáñez-Mó M, Siljander PR-M, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  13. Skotland T, Hessvik NP, Sandvig K, Llorente A (2019) Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 60:9–18. https://doi.org/10.1194/jlr.R084343

    Article  CAS  PubMed  Google Scholar 

  14. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  15. Weber JA, Baxter DH, Zhang S et al (2010) The MicroRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. https://doi.org/10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerhauser C (2018) Impact of dietary gut microbial metabolites on the epigenome. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2017.0359

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li R, Ibeagha-Awemu EM (2017) Altered gene expression of epigenetic modifying enzymes in response to dietary supplementation with linseed oil. J Dairy Res 84:119–123. https://doi.org/10.1017/S002202991700022X

    Article  CAS  PubMed  Google Scholar 

  18. Tomé-Carneiro J, Crespo MC, Iglesias-Gutierrez E et al (2016) Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans. J Nutr Biochem 34:146–155. https://doi.org/10.1016/j.jnutbio.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  19. Aganzo M, Montojo M-T, de Las L, Hazas M-C et al (2018) Customized dietary intervention avoids unintentional weight loss and modulates circulating miRNAs footprint in huntington’s disease. Mol Nutr Food Res 62:1800619. https://doi.org/10.1002/mnfr.201800619

    Article  CAS  Google Scholar 

  20. Ortega FJ, Cardona-Alvarado MI, Mercader JM et al (2015) Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J Nutr Biochem 26:1095–1101. https://doi.org/10.1016/j.jnutbio.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  21. Canfrán-Duque A, Pastor Ó, Quintana-Portillo R et al (2014) Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 58:687–697. https://doi.org/10.1002/mnfr.201300350

    Article  CAS  PubMed  Google Scholar 

  22. Soleti R, Andriantsitohaina R, Martinez MC (2018) Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Arch Biochem Biophys 644:57–63. https://doi.org/10.1016/j.abb.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  23. González-Sarrías A, Giménez-Bastida JA, García-Conesa MT et al (2010) Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 54:311–322. https://doi.org/10.1002/mnfr.200900152

    Article  CAS  PubMed  Google Scholar 

  24. Gurha P (2016) MicroRNAs in cardiovascular disease. Curr Opin Cardiol 31:249–254. https://doi.org/10.1097/HCO.0000000000000280

    Article  PubMed  Google Scholar 

  25. Rajaram S, Valls-Pedret C, Cofán M et al (2016) The walnuts and healthy aging study (WAHA): protocol for a nutritional intervention trial with walnuts on brain aging. Front Aging Neurosci 8:333. https://doi.org/10.3389/fnagi.2016.00333

    Article  CAS  PubMed  Google Scholar 

  26. Sala-Vila A, Valls-Pedret C, Rajaram S et al (2020) Effect of a 2-year diet intervention with walnuts on cognitive decline. The walnuts and healthy aging (WAHA) study: a randomized controlled trial. Am J Clin Nutr 111:590–600. https://doi.org/10.1093/ajcn/nqz328

    Article  PubMed  Google Scholar 

  27. Molina L, Sarmiento M, Peñafiel J et al (2017) Validation of the regicor short physical activity questionnaire for the adult population. PLoS ONE 12:e0168148. https://doi.org/10.1371/journal.pone.0168148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joint FAO/WHO/UNU expert consultation on energy and protein requirements (1981 : Rome I (1985) energy and protein requirements : report of a joint FAO/WHO/UNU expert consultation. World Health Organization

  29. Sodi R, Eastwood J, Caslake M et al (2017) Relationship between circulating microRNA-30c with total- and LDL-cholesterol, their circulatory transportation and effect of statins. Clin Chim Acta 466:13–19. https://doi.org/10.1016/j.cca.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  30. Hoffmann J, Günther J, Stecher L et al (2019) Effects of a lifestyle intervention in routine care on short- and long-term maternal weight retention and breastfeeding behavior-12 months follow-up of the cluster-randomized gelis trial. J Clin Med 8:876. https://doi.org/10.3390/jcm8060876

    Article  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  32. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  33. Pastor Ó, Guzmán-Lafuente P, Serna J et al (2019) A comprehensive evaluation of omega-3 fatty acid supplementation in cystic fibrosis patients using lipidomics. J Nutr Biochem 63:197–205. https://doi.org/10.1016/j.jnutbio.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  34. Gardner MS, McWilliams LG, Jones JI et al (2017) Simultaneous quantification of free cholesterol, cholesteryl esters, and triglycerides without ester hydrolysis by UHPLC separation and in-source collision induced dissociation coupled MS/MS. J Am Soc Mass Spectrom 28:2319–2329. https://doi.org/10.1007/s13361-017-1756-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liebisch G, Vizcaíno JA, Köfeler H et al (2013) Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res 54:1523–1530. https://doi.org/10.1194/jlr.M033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13:e0206239. https://doi.org/10.1371/journal.pone.0206239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carmona-Saez P, Chagoyen M, Tirado F et al (2007) GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 8:R3. https://doi.org/10.1186/gb-2007-8-1-r3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nogales-Cadenas R, Carmona-Saez P, Vazquez M et al (2009) GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res 37:W317–W322. https://doi.org/10.1093/nar/gkp416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A (2012) GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res 40:W478–W483. https://doi.org/10.1093/nar/gks402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ludwig N, Leidinger P, Becker K et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877. https://doi.org/10.1093/nar/gkw116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ioannidis JPA (2008) Why most discovered true associations are inflated. Epidemiology 19:640–648. https://doi.org/10.1097/EDE.0b013e31818131e7

    Article  PubMed  Google Scholar 

  42. Nair VS, Pritchard CC, Tewari M, Ioannidis JPA (2014) Design and analysis for studying microRNAs in human disease: a primer on-omic technologies. Am J Epidemiol 180:140–152

    Article  Google Scholar 

  43. Kalra H, Simpson RJ, Ji H et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450. https://doi.org/10.1371/journal.pbio.1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bachurski D, Schuldner M, Nguyen P-H et al (2019) Extracellular vesicle measurements with nanoparticle tracking analysis—an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 8:1596016. https://doi.org/10.1080/20013078.2019.1596016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  46. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. https://doi.org/10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008. https://doi.org/10.1073/pnas.1019055108

    Article  PubMed  PubMed Central  Google Scholar 

  48. García-Romero N, Carrión-Navarro J, Esteban-Rubio S et al (2017) DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 8:1416–1428. https://doi.org/10.18632/oncotarget.13635

    Article  PubMed  Google Scholar 

  49. Gil-zamorano J, Martin R, Daimiel L et al (2014) Docosahexaenoic acid modulates the enterocyte caco-2 cell expression of MicroRNAs involved in lipid metabolism. J Nutr 1(3):575–585. https://doi.org/10.3945/jn.113.189050.575

    Article  Google Scholar 

  50. Casas-Agustench P, Fernandes FS, Tavares do Carmo MG, et al (2015) Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of micrornas in mothers and offspring. PLoS ONE 10:e0117858. https://doi.org/10.1371/journal.pone.0117858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nuñez-Sánchez MA, Dávalos A, González-Sarrías A et al (2015) MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: critical issues to discern between modulatory effects and potential artefacts. Mol Nutr Food Res 59:1973–1986. https://doi.org/10.1002/mnfr.201500357

    Article  CAS  PubMed  Google Scholar 

  52. Kim H, Banerjee N, Sirven MA et al (2017) Pomegranate polyphenolics reduce inflammation and ulceration in intestinal colitis—involvement of the miR-145/p70S6K1/HIF1α axis in vivo and in vitro. J Nutr Biochem 43:107–115. https://doi.org/10.1016/j.jnutbio.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  53. Cai Q, He B, Weiberg A et al (2019) Small RNAs and extracellular vesicles: new mechanisms of cross-species communication and innovative tools for disease control. PLOS Pathog 15:e1008090. https://doi.org/10.1371/journal.ppat.1008090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126. https://doi.org/10.1038/cr.2011.158

    Article  CAS  PubMed  Google Scholar 

  55. Dávalos A, Henriques R, Latasa MJ et al (2019) Literature review of baseline information on non-coding RNA (ncRNA) to support the risk assessment of ncRNA-based genetically modified plants for food and feed. EFSA Support Publ. https://doi.org/10.2903/sp.efsa.2019.en-1688

    Article  Google Scholar 

  56. Liang H, Zhang S, Fu Z et al (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem 26:505–512. https://doi.org/10.1016/J.JNUTBIO.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  57. Dickinson B, Zhang Y, Petrick JS et al (2013) Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 31:965–967

    Article  CAS  Google Scholar 

  58. Xiao J, Feng S, Wang X et al (2018) Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. https://doi.org/10.7717/peerj.5186

    Article  PubMed  PubMed Central  Google Scholar 

  59. Köpke S, Buhrke T, Lampen A (2015) miRNA expression in human intestinal caco-2 cells is comparably regulated by cis - and trans -fatty acids. Lipids 50:227–239. https://doi.org/10.1007/s11745-015-3988-x

    Article  CAS  PubMed  Google Scholar 

  60. Wu W, Yang J, Feng X et al (2013) MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol Cancer 12:30. https://doi.org/10.1186/1476-4598-12-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gorji N, Moeini R, Memariani Z (2018) Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacol Res 129:115–127. https://doi.org/10.1016/j.phrs.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  62. Li Z, Hassan MQ, Jafferji M et al (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684. https://doi.org/10.1074/jbc.M809787200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeng Q, Wang Y, Gao J et al (2019) miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett 24:11. https://doi.org/10.1186/s11658-019-0136-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Papoutsi Z, Kassi E, Chinou I et al (2008) Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 99:715–722. https://doi.org/10.1017/S0007114507837421

    Article  CAS  PubMed  Google Scholar 

  65. Movassagh EZ, Vatanparast H (2017) Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr An Int Rev J 8(1):2–16. https://doi.org/10.3945/an.116.013326

    Article  CAS  Google Scholar 

  66. Jiang W, Zhang Z, Yang H et al (2017) The involvement of miR-29b-3p in arterial calcification by targeting matrix metalloproteinase-2. Biomed Res Int 2017:6713606. https://doi.org/10.1155/2017/6713606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trompeter H-I, Dreesen J, Hermann E et al (2013) MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 14:111. https://doi.org/10.1186/1471-2164-14-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haider S, Batool Z, Ahmad S et al (2018) Walnut supplementation reverses the scopolamine-induced memory impairment by restoration of cholinergic function via mitigating oxidative stress in rats: a potential therapeutic intervention for age related neurodegenerative disorders. Metab Brain Dis 33:39–51. https://doi.org/10.1007/s11011-017-0120-3

    Article  CAS  PubMed  Google Scholar 

  69. Hicyilmaz H, Vural H, Delibas N et al (2017) The effects of walnut supplementation on hippocampal NMDA receptor subunits NR2A and NR2B of rats. Nutr Neurosci 20:203–208. https://doi.org/10.1179/1476830514Y.0000000166

    Article  CAS  PubMed  Google Scholar 

  70. Tsoukas MA, Ko B-J, Witte TR et al (2015) Dietary walnut suppression of colorectal cancer in mice: mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem 26:776–783. https://doi.org/10.1016/j.jnutbio.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  71. Pathan M, Fonseka P, Chitti SV et al (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47:D516–D519. https://doi.org/10.1093/nar/gky1029

    Article  CAS  PubMed  Google Scholar 

  72. Skotland T, Ekroos K, Kauhanen D et al (2017) Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer 70:122–132. https://doi.org/10.1016/j.ejca.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  73. Haraszti RA, Didiot M-C, Sapp E et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:32570. https://doi.org/10.3402/jev.v5.32570

    Article  CAS  PubMed  Google Scholar 

  74. Hough KP, Wilson LS, Trevor JL et al (2018) Unique lipid signatures of extracellular vesicles from the airways of asthmatics. Sci Rep 8:10340. https://doi.org/10.1038/s41598-018-28655-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the volunteers who participated in this study, the Hector Peinado Lab (Madrid) for the use of NanoSight equipment and the Solmeglas S. L. company (Madrid) for the use of ZetaView® equipment. CIBEROBN is an initiative of Instituto de Salud Carlos III, Spain. We thank the Quantification and Molecular Characterization Unit (IRYCIS) for their technical help.

Funding

This research was supported in part by a grant from the California Walnut Commission, Folsom, CA, USA. The funding agency had no involvement in any stage of the study design, research or writing of the manuscript. The work is also supported by Fundación Ramón Areces (CIVP18A3888) Madrid, Spain; the Instituto de Salud Carlos III-Fondo de Investigación Sanitaria–Fondo Europeo de Desarrollo Regional (grant PI15/01014 and PI18/01152), and the Spanish Agencia Estatal de Investigación and European Feder Funds (AGL2016-78922-R, PID2019-109369RB-I00, RTI2018-093873-A-I00 and BIO2017-86500-R). AS-V is recipient of the Instituto de Salud Carlos III Miguel Servet II fellowship (grant CP II 17/00029). MCLH and LdP were supported by a postdoctoral research contract funded by the community of Madrid and European Union (PEJD-2016/BIO-2781 and PEJD-2017-PRE/BIO-5100, respectively). D.C.M.-E. is a fellow of “Centro de Estudios Interdisciplinarios Básicos y Aplicados” (CEIBA), Colombia, through the program “Bolívar Gana con Ciencia”. Also, A.G.-R. acknowledges the Marie Curie AMAROUT-II Europe Program (Grant Agreement No. 291803).

Author information

Authors and Affiliations

Authors

Contributions

JS, SR, ER, AS-V and AD designed the study. MC, MS-M, IR, T-MF-S, MD, CV-P recruited and obtained the samples. MCLH, JG-Z, DME, LDP, AGR and AD, performed miRNA analysis. MCLH, CM, and MYM contributed to the NTA analysis, MCLH, JG-Z and DCME analyzed data. OP perform the lipidomic analysis. MCLH and DCME performed bioinformatic analysis. MCLH, ER, AS-V and AD wrote the manuscript. All authors reviewed and accepted the manuscript.

Corresponding authors

Correspondence to Aleix Sala-Vila or Alberto Dávalos.

Ethics declarations

Conflict of interest

AS-V, SR, JS, and ER have received research funding through their institutions from the California Walnut Commission, Folsom, CA, USA. JS and ER were nonpaid members of California Walnut Commission Scientific Advisory Council. ER was a paid member of the California Walnut Commission Health Research Advisory Group. AS-V has received support from California Walnut Commission to attend professional meetings. All the other authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López de las Hazas, MC., Gil-Zamorano, J., Cofán, M. et al. One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr 60, 1999–2011 (2021). https://doi.org/10.1007/s00394-020-02390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02390-2

Keywords

Navigation