Skip to main content

Advertisement

Log in

Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Probiotics have been shown to exert beneficial effects in IBD although their exact mechanisms are not completely understood. The aim of the present study was to assess the intestinal anti-inflammatory activity of different probiotics (Lactobacillus fermentum CECT5716, Lactobacillus salivarius CECT5713, Escherichia coli Nissle 1917, Saccharomyces boulardii CNCMI-745 in the dinitrobenzene sulfonic acid (DNBS) model of mouse colitis and correlate it with the modifications of the gut microbiota and the immune response, focusing on miRNA expression.

Methods

The probiotics were daily administered orally for 25 days. On day 19 colitis was induced by rectal installation of DNBS. At the end of the treatment, mice were sacrificed and the colonic damage was assessed biochemically by analysing the expression of different markers involved in the immune response, including miRNAs; and the colonic microbiota by pyrosequencing. Probiotics properties were also evaluated in vitro in different immune cell types (CMT-93 intestinal epithelial cells and bone marrow-derived macrophages), where the expression of different mRNAs and miRNAs was examined.

Results

All the probiotics displayed intestinal anti-inflammatory effects but slightly different, especially regarding miRNAs expression. Likewise, the probiotics ameliorated the colitis-associated dysbiosis, although showing differences in the main bacterial groups affected.

Conclusion

Among the probiotics assayed, Lactobacillus fermentum CECT5716 and Escherichia coli Nissle 1917 appear to present the best intestinal anti-inflammatory effects, being the latter one of the few probiotics with reputed efficacy in human IBD. Therefore, Lactobacillus fermentum CECT5716 could be considered as a complementary nutritional strategy for IBD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AUC:

Area under the curve

BMDM:

Bone marrow-derived macrophages

DAI:

Disease activity index

DMEM:

Dulbecco's Modified Eagle Medium

DNBS:

Dinitrobenzene sulfonic acid

emPCR:

Emulsion-based clonal amplification

Gapdh :

Glyceraldehyde-3-phosphate dehydrogenase

IBD:

Inflammatory bowel disease

iNos :

Inducible nitric oxide synthase

miRNAs:

MicroRNAs

NO:

Nitric oxide

Ocln :

Occluding

RDP:

Ribosomal database project

Snord95:

Small nucleolar RNA, C/D box 95

STAMP:

Statistical analysis of metagenomic profiles

References

  1. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Investig 117(3):514–521. https://doi.org/10.1172/JCI30587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785. https://doi.org/10.1073/pnas.0706625104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang C, Chen J (2019) microRNAs as therapeutic targets in intestinal diseases. ExRNA 1(1):23

    Article  Google Scholar 

  4. Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD (2020) The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 144:104200. https://doi.org/10.1016/j.micpath.2020.104200

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodriguez-Cabezas ME, Galvez J (2017) Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700144

    Article  PubMed  Google Scholar 

  6. Rodriguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Rodriguez-Cabezas ME, Galvez J (2018) Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 61:129–139. https://doi.org/10.1016/j.jnutbio.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  7. Basso PJ, Camara NOS, Sales-Campos H (2018) Microbial-based therapies in the treatment of inflammatory bowel disease—an overview of human studies. Front Pharmacol 9:1571. https://doi.org/10.3389/fphar.2018.01571

    Article  CAS  PubMed  Google Scholar 

  8. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A (2019) Mechanisms of action of probiotics. Adv Nutr 10(suppl_1):S49–S66. https://doi.org/10.1093/advances/nmy063

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reid G (2016) Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol 30(1):17–25. https://doi.org/10.1016/j.bpg.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  10. O’Hara AM, Shanahan F (2007) Mechanisms of action of probiotics in intestinal diseases. Sci World J 7:31–46. https://doi.org/10.1100/tsw.2007.26

    Article  CAS  Google Scholar 

  11. Rodriguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Fernandez-Caballero JA, Garcia F, Rodriguez-Cabezas ME, Galvez J (2018) The Administration of Escherichia coli Nissle 1917 ameliorates development of DSS-induced colitis in mice. Front Pharmacol 9:468. https://doi.org/10.3389/fphar.2018.00468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Randhawa PK, Singh K, Singh N, Jaggi AS (2014) A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 18(4):279–288. https://doi.org/10.4196/kjpp.2014.18.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xaus J, Mirabet M, Lloberas J, Soler C, Lluis C, Franco R, Celada A (1999) IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162(6):3607–3614

    CAS  PubMed  Google Scholar 

  14. Qiu BS, Vallance BA, Blennerhassett PA, Collins SM (1999) The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5(10):1178–1182. https://doi.org/10.1038/13503

    Article  CAS  PubMed  Google Scholar 

  15. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141-145. https://doi.org/10.1093/nar/gkn879

    Article  CAS  PubMed  Google Scholar 

  16. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dalal SR, Chang EB (2014) The microbial basis of inflammatory bowel diseases. J Clin Investig 124(10):4190–4196. https://doi.org/10.1172/JCI72330

    Article  PubMed  PubMed Central  Google Scholar 

  18. Derwa Y, Gracie DJ, Hamlin PJ, Ford AC (2017) Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 46(4):389–400. https://doi.org/10.1111/apt.14203

    Article  CAS  PubMed  Google Scholar 

  19. Baugh MD, Perry MJ, Hollander AP, Davies DR, Cross SS, Lobo AJ, Taylor CJ, Evans GS (1999) Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 117(4):814–822. https://doi.org/10.1016/s0016-5085(99)70339-2

    Article  CAS  PubMed  Google Scholar 

  20. Lanas A (2008) Role of nitric oxide in the gastrointestinal tract. Arthritis Res Ther 10(Suppl 2):S4. https://doi.org/10.1186/ar2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guihot G, Guimbaud R, Bertrand V, Narcy-Lambare B, Couturier D, Duee PH, Chaussade S, Blachier F (2000) Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with Crohn’s disease. Amino Acids 18(3):229–237. https://doi.org/10.1007/s007260050020

    Article  CAS  PubMed  Google Scholar 

  22. Johansson ME (2014) Mucus layers in inflammatory bowel disease. Inflamm Bowel Dis 20(11):2124–2131. https://doi.org/10.1097/MIB.0000000000000117

    Article  PubMed  Google Scholar 

  23. Tufekci KU, Meuwissen RL, Genc S (2014) The role of microRNAs in biological processes. Methods Mol Biol 1107:15–31. https://doi.org/10.1007/978-1-62703-748-8_2

    Article  CAS  PubMed  Google Scholar 

  24. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140-144. https://doi.org/10.1093/nar/gkj112

    Article  CAS  PubMed  Google Scholar 

  25. Archanioti P, Gazouli M, Theodoropoulos G, Vaiopoulou A, Nikiteas N (2011) Micro-RNAs as regulators and possible diagnostic bio-markers in inflammatory bowel disease. J Crohn’s Colitis 5(6):520–524. https://doi.org/10.1016/j.crohns.2011.05.007

    Article  Google Scholar 

  26. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122. https://doi.org/10.1038/nri2708

    Article  CAS  PubMed  Google Scholar 

  27. Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O’Neill LA, Masters SL (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol 189(8):3795–3799. https://doi.org/10.4049/jimmunol.1200312

    Article  CAS  PubMed  Google Scholar 

  28. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16(1):49–58. https://doi.org/10.1038/nm.2054

    Article  CAS  PubMed  Google Scholar 

  29. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Maitra A, Mendell JT (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157(5):1104–1116. https://doi.org/10.1016/j.cell.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86. https://doi.org/10.1126/science.1091903

    Article  CAS  PubMed  Google Scholar 

  31. Goto Y, Kiyono H (2011) Epithelial cell microRNAs in gut immunity. Nat Immunol 12(3):195–197. https://doi.org/10.1038/ni0311-195

    Article  CAS  PubMed  Google Scholar 

  32. Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, Kredo-Russo S, Avnit-Sagi T, Cojocaru G, Zreik F, Bentwich Z, Poy MN, Artis D, Walker MD, Hornstein E, Pikarsky E, Ben-Neriah Y (2011) Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol 12(3):239–246. https://doi.org/10.1038/ni.1994

    Article  CAS  PubMed  Google Scholar 

  33. Garrido-Mesa J, Algieri F, Rodriguez-Nogales A, Vezza T, Utrilla MP, Garcia F, Chueca N, Rodriguez-Cabezas ME, Garrido-Mesa N, Galvez J (2018) Immunomodulatory tetracyclines ameliorate DNBS-colitis: Impact on microRNA expression and microbiota composition. Biochem Pharmacol 155:524–536. https://doi.org/10.1016/j.bcp.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  34. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/- mice precedes expression in the colon. J Immunol 187(11):5834–5841. https://doi.org/10.4049/jimmunol.1100922

    Article  CAS  PubMed  Google Scholar 

  35. Giahi L, Aumueller E, Elmadfa I, Haslberger AG (2012) Regulation of TLR4, p38 MAPkinase, IkappaB and miRNAs by inactivated strains of lactobacilli in human dendritic cells. Benef Microbes 3(2):91–98. https://doi.org/10.3920/BM2011.0052

    Article  CAS  PubMed  Google Scholar 

  36. Knox NC, Forbes JD, Peterson CL, Van Domselaar G, Bernstein CN (2019) The gut microbiome in inflammatory bowel disease: lessons learned from other immune-mediated inflammatory diseases. Am J Gastroenterol 114(7):1051–1070. https://doi.org/10.14309/ajg.0000000000000305

    Article  PubMed  Google Scholar 

  37. Yu LC (2018) Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 25(1):79. https://doi.org/10.1186/s12929-018-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ (2006) Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 44(11):4136–4141. https://doi.org/10.1128/JCM.01004-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andoh A, Kuzuoka H, Tsujikawa T, Nakamura S, Hirai F, Suzuki Y, Matsui T, Fujiyama Y, Matsumoto T (2012) Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol 47(12):1298–1307. https://doi.org/10.1007/s00535-012-0605-0

    Article  PubMed  Google Scholar 

  40. Atarashi K, Umesaki Y, Honda K (2011) Microbiotal influence on T cell subset development. Semin Immunol 23(2):146–153. https://doi.org/10.1016/j.smim.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  41. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12(5):319–330. https://doi.org/10.1007/s11894-010-0131-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim YS, Milner JA (2007) Dietary modulation of colon cancer risk. J Nutr 137(11 Suppl):2576S-2579S. https://doi.org/10.1093/jn/137.11.2576S

    Article  PubMed  Google Scholar 

  43. Stephani J, Radulovic K, Niess JH (2011) Gut microbiota, probiotics and inflammatory bowel disease. Arch Immunol Ther Exp 59(3):161–177. https://doi.org/10.1007/s00005-011-0122-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Junta de Andalucía (CTS 164) and by the Spanish Ministry of Economy and Competitiveness (SAF2011-29648 and AGL2015-67995-C3-3-R) with funds from the European Union. A. Rodriguez-Nogales is a postdoctoral fellow of Instituto de Salud Carlos III (Miguel Servet Program); R. Moron is a postdoctoral fellow of Instituto de Salud Carlos III (Rio Hortega Program); T. Vezza is a postdoctoral fellow from Instituto de Investigación Biosanitaria de Granada. The CIBER-EHD and the “Red de Investigación en SIDA” are funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GG, AR-N and RM; Methodology: FA, JG-M, MJR-S, MER-C, MO and TV; Formal analysis and investigation: FA, JG-M, MJR-S, MER-C, MO and TV; Writing—original draft preparation: RM and AR-N; Writing—review and editing: TV, RM and AR-N; Funding acquisition: JG; Supervision: JG, RM and AR-N.

Corresponding author

Correspondence to Teresa Vezza.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interests. The funders had no role in the study design, data collection, and analysis.

Ethical approval

All studies were carried out following the ‘Guide for the Care and Use of Laboratory Animals’ as promulgated by the National Institute of Health and the protocols approved by the Ethic Committee of Laboratory Animals of the University of Granada (Spain) (Ref. No. CEEA-2010–286). They were therefore performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algieri, F., Garrido-Mesa, J., Vezza, T. et al. Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs. Eur J Nutr 60, 2537–2551 (2021). https://doi.org/10.1007/s00394-020-02441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02441-8

Keywords

Navigation