Skip to main content

Advertisement

Log in

The associations of the Palaeolithic diet alone and in combination with lifestyle factors with type 2 diabetes and hypertension risks in women in the E3N prospective cohort

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Patterns of change from the traditional Palaeolithic lifestyle to the modern lifestyle may partly explain the epidemic proportions of non-communicable diseases (NCDs). We investigated to what extent adherence to the Palaeolithic diet (PD) and the Palaeolithic-like lifestyle was associated with type 2 diabetes (T2D) and hypertension risks.

Methods

A study of 70,991 women from the E3N (Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l’Education Nationale) cohort, followed up for nearly 20 years. There were 3292 incident T2D and 12,504 incident hypertension cases that were validated. Dietary data were collected at baseline in 1993 via a food frequency questionnaire. The PD score and the Palaeolithic-like lifestyle score (PD, physical activity, smoking status, and body mass index [BMI]) were derived and considered in quintiles. Multivariable Cox regression models were employed to estimate hazard ratios (HR) and 95% confidence intervals (CI) for incident T2D and hypertension.

Results

In the fully adjusted models, a 1-SD increase of the PD score was associated with 4% and 3% lower risks of T2D and hypertension, respectively. Those in the highest versus the lowest quintile of the score had HR (95% CI) of 0.88 (0.79, 0.98) and 0.91 (0.86, 0.96) for T2D and hypertension, respectively (P-trend < 0.0001). Associations were stronger for the Palaeolithic-like lifestyle score; in the fully adjusted model, a 1-SD increase of the score was associated with 19% and 6% lower risks of T2D and hypertension, respectively. Risks lowered successively with each increase in quintile; those in the highest versus the lowest quintile had HR (95% CI) of 0.58 (0.52, 0.65) and 0.85 (0.80, 0.90) for T2D and hypertension, respectively (P-trend < 0.0001).

Conclusions

Our data suggest that adhering to a PD based on fruit, vegetables, lean meats, fish, and nuts, and incorporating a Palaeolithic-like lifestyle could be promising options to prevent T2D and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed for the current study are not publicly available, but are available from the corresponding author on reasonable request.

Abbreviations

AHA:

American Heart Association

BMI:

Body mass index

CI:

Confidence interval

DASH:

Dietary Approach to Stop Hypertension

E3N:

Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l’Education Nationale

HDL:

High-density lipoproteins

HR:

Hazard ratio

LDL:

Low-density lipoproteins

MGEN:

Mutuelle Générale de l’Education Nationale

mg/dL:

Milligrams per decilitre

mmol/L:

Millimoles per litre

NCDs:

Non-communicable diseases

PD:

Palaeolithic diet

SD:

Standard deviation

T2D:

Type 2 diabetes

WHO:

World Health Organization

US:

United States

References

  1. American Diabetes Association (2018) Economic costs of diabetes in the U.S. in 2017. Diabetes Care 41:917–928. https://care.diabetesjournals.org/content/41/5/917. Accessed 10 Mar 2021

  2. Kirkland EB, Heincelman M, Bishu KG et al (2018) Trends in healthcare expenditures among US adults with hypertension: national estimates, 2003–2014. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.008731

    Article  PubMed  PubMed Central  Google Scholar 

  3. International Diabetes Federation Diabetes Atlas (2019) Global diabetes data report 2010-2045. https://diabetesatlas.org/data/en/world/. Accessed 10 Mar 2021

  4. World Health Organization (2013) A global brief on hypertension: silent killer, global public health crisis. https://apps.who.int/iris/bitstream/handle/10665/79059/WHO_DCO_WHD_2013.2_eng.pdf. Accessed 10 Mar 2021

  5. Kopp W (2019) How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes 12:2221–2236. https://doi.org/10.2147/DMSO.S216791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fabbri E, Zoli M, Gonzalez-Freire M et al (2015) Aging and multimorbidity: new tasks, priorities, and frontiers for integrated gerontological and clinical research. J Am Med Dir Assoc 16:640–647. https://doi.org/10.1016/j.jamda.2015.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  7. Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x

    Article  PubMed  Google Scholar 

  8. Pontzer H, Wood BM, Raichlen DA (2018) Hunter-gatherers as models in public health. Obes Rev 19(Suppl 1):24–35. https://doi.org/10.1111/obr.12785

    Article  PubMed  Google Scholar 

  9. Egger G, Dixon J (2014) Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res Int 2014:1–12. https://doi.org/10.1155/2014/731685

    Article  Google Scholar 

  10. González J, Valls N, Brito R, Rodrigo R (2014) Essential hypertension and oxidative stress: new insights. World J Cardiol 6:353–366. https://doi.org/10.4330/wjc.v6.i6.353

    Article  PubMed  PubMed Central  Google Scholar 

  11. Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11:45–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628012/pdf/ijppp0011-0045.pdf

  12. Aleksandrova K, Pischon T, Jenab M et al (2014) Combined impact of healthy lifestyle factors on colorectal cancer: a large European cohort study. BMC Med 12:168. https://doi.org/10.1186/s12916-014-0168-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hastert TA, White E (2016) Association between meeting the WCRF/AICR cancer prevention recommendations and colorectal cancer incidence: results from the VITAL cohort. Cancer Causes Control 27:1347–1359. https://doi.org/10.1007/s10552-016-0814-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Masharani U, Sherchan P, Schloetter M et al (2015) Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes. Eur J Clin Nutr 69:944–948. https://doi.org/10.1038/ejcn.2015.39

    Article  CAS  PubMed  Google Scholar 

  15. Frassetto LA, Schloetter M, Mietus-Synder M et al (2009) Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr 63:947–955. https://doi.org/10.1038/ejcn.2009.4

    Article  CAS  PubMed  Google Scholar 

  16. Cordain L (2015) The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. https://thepaleodiet.com/wp-content/uploads/2015/08/The-Nutritional-Characteristics-of-a-Contemporary-Diet-Based-Upon-Paleolithic-Food-Groups-The-Paleo-Diet.pdf Accessed 10 Mar 2021

  17. Whalen KA, McCullough M, Flanders WD et al (2014) Paleolithic and Mediterranean diet pattern scores and risk of incident, sporadic colorectal adenomas. Am J Epidemiol 180:1088–1097. https://doi.org/10.1093/aje/kwu235

    Article  PubMed  PubMed Central  Google Scholar 

  18. Whalen KA, Judd S, McCullough ML et al (2017) Paleolithic and Mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr 147:612–620. https://doi.org/10.3945/jn.116.241919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucas F, Niravong M, Villeminot S et al (1995) Estimation of food portion size using photographs: validity, strengths, weaknesses and recommendations. J Hum Nutr Diet 8:65–74. https://doi.org/10.1111/j.1365-277X.1995.tb00296.x

    Article  Google Scholar 

  20. van Liere MJ, Lucas F, Clavel F et al (1997) Relative validity and reproducibility of a French dietary history questionnaire. Int J Epidemiol 26(Suppl 1):S128–S136. https://doi.org/10.1093/ije/26.suppl_1.s128

    Article  PubMed  Google Scholar 

  21. Ciqual Table de composition nutritionnelle des aliments. https://ciqual.anses.fr. Accessed 10 Mar 2021

  22. Food And Agriculture Organization Of The United Nations (2013) Guidelines for measuring household and individual dietary diversity. http://www.fao.org/3/i1983e/i1983e.pdf. Accessed 10 Mar 2021

  23. Tehard B, van Liere MJ, Com Nougué C, Clavel-Chapelon F (2002) Anthropometric measurements and body silhouette of women: validity and perception. J Am Diet Assoc 102:1779–1784. https://doi.org/10.1016/s0002-8223(02)90381-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng E, Um CY, Prizment AE et al (2018) Evolutionary-concordance lifestyle and diet and Mediterranean diet pattern scores and risk of incident colorectal cancer in iowa women. Cancer Epidemiol Biomarkers Prev 27:1195–1202. https://doi.org/10.1158/1055-9965.EPI-17-1184

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mancini FR, Affret A, Dow C et al (2018) Dietary antioxidant capacity and risk of type 2 diabetes in the large prospective E3N-EPIC cohort. Diabetologia 61:308–316. https://doi.org/10.1007/s10654-019-00548-9

    Article  CAS  PubMed  Google Scholar 

  26. Lajous M, Rossignol E, Fagherazzi G et al (2016) Flavonoid intake and incident hypertension in women. Am J Clin Nutr 103:1091–1098. https://doi.org/10.3945/ajcn.115.109249

    Article  CAS  PubMed  Google Scholar 

  27. Desquilbet L, Mariotti F (2010) Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 29:1037–1057. https://doi.org/10.1002/sim.3841

    Article  PubMed  Google Scholar 

  28. Cottet V, Touvier M, Fournier A et al (2009) Postmenopausal breast cancer risk and dietary patterns in the E3N-EPIC prospective cohort study. Am J Epidemiol 170:1257–1267. https://doi.org/10.1093/aje/kwp257

    Article  PubMed  Google Scholar 

  29. Jönsson T, Granfeldt Y, Ahrén B et al (2009) Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 8:35. https://doi.org/10.1186/1475-2840-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lindeberg S, Jönsson T, Granfeldt Y et al (2007) A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 50:1795–1807. https://doi.org/10.1007/s00125-007-0716-y

    Article  CAS  PubMed  Google Scholar 

  31. Osterdahl M, Kocturk T, Koochek A, Wändell PE (2008) Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur J Clin Nutr 62:682–685. https://doi.org/10.1038/sj.ejcn.1602790

    Article  CAS  PubMed  Google Scholar 

  32. Manheimer EW, van Zuuren EJ, Fedorowicz Z, Pijl H (2015) Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr 102:922–932. https://doi.org/10.3945/ajcn.115.113613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mellberg C, Sandberg S, Ryberg M et al (2014) Long-term effects of a Palaeolithic-type diet in obese postmenopausal women: a 2 year randomized trial. Eur J Clin Nutr 68:350–357. https://doi.org/10.1038/ejcn.2013.290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta L, Khandelwal D, Lal PR et al (2019) Palaeolithic diet in diabesity and endocrinopathies—a Vegan’s perspective. Eur Endocrinol 15:77–82. https://doi.org/10.17925/EE.2019.15.2.77

    Article  PubMed  PubMed Central  Google Scholar 

  35. Halton TL, Liu S, Manson JE, Hu FB (2008) Low-carbohydrate-diet score and risk of type 2 diabetes in women. Am J Clin Nutr 87:339–346. https://doi.org/10.1093/ajcn/87.2.339

    Article  CAS  PubMed  Google Scholar 

  36. Meng Y, Bai H, Wang S et al (2017) Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 131:124–131. https://doi.org/10.1016/j.diabres.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  37. Unwin DJ, Tobin SD, Murray SW et al (2019) Substantial and sustained improvements in blood pressure, weight and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16152680

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dong T, Guo M, Zhang P et al (2020) The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PLoS ONE 15:e0225348. https://doi.org/10.1371/journal.pone.0225348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwingshackl L, Missbach B, König J, Hoffmann G (2015) Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr 18:1292–1299. https://doi.org/10.1017/s1368980014001542

    Article  PubMed  Google Scholar 

  40. Cordain L, Eaton SB, Sebastian A et al (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354. https://doi.org/10.1093/ajcn.81.2.341

    Article  CAS  PubMed  Google Scholar 

  41. De Pergola G, D’Alessandro A (2018) Influence of Mediterranean diet on blood pressure. Nutrients 10(11):1700. https://doi.org/10.3390/nu10111700

    Article  CAS  PubMed Central  Google Scholar 

  42. Monge A, Lajous M, Ortiz-Panozo E et al (2018) Western and Modern Mexican dietary patterns are directly associated with incident hypertension in Mexican women: a prospective follow-up study. Nutr J 17:21. https://doi.org/10.1186/s12937-018-0332-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun J, Buys NJ, Hills AP (2014) Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int J Environ Res Public Health 11:3956–3971. https://doi.org/10.3390/ijerph110403956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajaobelina K, Dow C, Romana Mancini F et al (2019) Population attributable fractions of the main type 2 diabetes mellitus risk factors in women: findings from the French E3N cohort. J Diabetes 11:242–253. https://doi.org/10.1111/1753-0407.12839

    Article  CAS  PubMed  Google Scholar 

  45. Joseph JJ, Echouffo-Tcheugui JB, Talegawkar SA et al (2017) Modifiable lifestyle risk factors and incident diabetes in African Americans. Am J Prev Med 53:e165–e174. https://doi.org/10.1016/j.amepre.2017.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Pan X-F, Chen J et al (2020) Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Diabetologia 63:21–33. https://doi.org/10.1007/s00125-019-04985-9

    Article  PubMed  Google Scholar 

  47. Lelong H, Kesse-guyot E, Galan P et al (2017) Combination of healthy lifestyle factors on the risk of hypertension in a large cohort of healthy adults. J Hypertens 11(7):1687. https://doi.org/10.3390/nu11071687

    Article  CAS  Google Scholar 

  48. Cochran G, Harpending H (2009) The 10,000 year explosion: how civilization accelerated human evolution. Basic Books

    Google Scholar 

  49. Pritchard JK (2010). How we are evolving. scientific American. https://www.scientificamerican.com/article/how-we-are-evolving. Accessed 10 Mar 2021

  50. Klonoff DC (2009) The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J Diabetes Sci Technol 3:1229–1232. https://doi.org/10.1177/193229680900300601

    Article  PubMed  PubMed Central  Google Scholar 

  51. Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688. https://doi.org/10.3181/0711-MR-311

    Article  CAS  Google Scholar 

  52. Jönsson T, Ahrén B, Pacini G et al (2006) A Paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs. Nutr Metab 3:39. https://doi.org/10.1186/1743-7075-3-39

    Article  CAS  Google Scholar 

  53. Silva Figueiredo P, Carla Inada A, Marcelino G et al (2017) Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients. https://doi.org/10.3390/nu9101158

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jönsson T, Granfeldt Y, Lindeberg S, Hallberg A-C (2013) Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr J 12:105. https://doi.org/10.1186/1475-2891-12-105

    Article  PubMed  PubMed Central  Google Scholar 

  55. Genoni A, Lyons-Wall P, Lo J, Devine A (2016) Cardiovascular, metabolic effects and dietary composition of Ad-libitum Paleolithic vs. Australian guide to healthy eating diets: a 4 week randomised trial. Nutrients 8(5):314. https://doi.org/10.3390/nu805031456

    Article  PubMed Central  Google Scholar 

  56. Huang Z, Willett WC, Manson JE et al (1998) Body weight, weight change, and risk for hypertension in women. Ann Intern Med 128:81–88. https://doi.org/10.7326/0003-4819-128-2-199801150-00001

    Article  CAS  PubMed  Google Scholar 

  57. Pereira MA, Folsom AR, McGovern PG et al (1999) Physical activity and incident hypertension in black and white adults: the atherosclerosis risk in communities study. Prev Med 28:304–312. https://doi.org/10.1006/pmed.1998.0431

    Article  CAS  PubMed  Google Scholar 

  58. Parker ED, Schmitz KH, Jacobs DR Jr et al (2007) Physical activity in young adults and incident hypertension over 15 years of follow-up: the CARDIA study. Am J Public Health 97:703–709. https://doi.org/10.2105/AJPH.2004.055889

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bellou V, Belbasis L, Tzoulaki I, Evangelou E (2018) Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS ONE 13:e0194127. https://doi.org/10.1371/journal.pone.0194127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reis JP, Loria CM, Sorlie PD et al (2011) Lifestyle factors and risk for new-onset diabetes: a population-based cohort study. Ann Intern Med 155:292–299. https://doi.org/10.7326/0003-4819-155-5-201109060-00006

    Article  PubMed  PubMed Central  Google Scholar 

  61. Naska A, Lagiou A, Lagiou P (2017) Dietary assessment methods in epidemiological research: current state of the art and future prospects. F1000Res 6:926. https://doi.org/10.12688/f1000research.10703.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee JA, Sunwoo S, Kim YS et al (2016) The effect of sleep quality on the development of type 2 diabetes in primary care patients. J Korean Med Sci 31:240–246. https://doi.org/10.3346/jkms.2016.31.2.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was carried out using data from Inserm (French National Institutes for Health and Medical Research) E3N cohort, which was established and maintained with the support of the Mutuelle Générale de l’Education Nationale (MGEN), Gustave Roussy, and the French League against Cancer (LNCC). E3N-E4N is also supported by the French National Research Agency (ANR) under the Investment for the Future Program (PIA) (ANR-10-COHO-0006) and by the French Ministry of Higher Education, Research and Innovation (subsidy for public service charges #2102 918823). The authors are indebted to all participants for their continued participation. They are also grateful to all members of the E3N study group and contribution by Emmanuelle Correia for insights on the dietary data.

Funding

This work was supported by a grant for the Nutriperso Project (IDEX Paris Saclay). This research was carried out using data from Inserm’s E3N cohort with the support of the MGEN, the Institut GUSTAVE ROUSSY and the Ligue contre le Cancer for the constitution and maintenance of the E3N cohort. This work has also benefited from State aid managed by the National Research Agency under the program “Investissement d’avenir” under the reference ANR-10-COHO-0006 as well as a subsidy from the “Ministère de l’enseignement supérieur, de la recherche et de l’innovation” for public service charges under the reference n°2102 918823.

Author information

Authors and Affiliations

Authors

Contributions

SS, NL MCBR and GS conceived and designed the study. SS performed the statistical analysis and drafted the original manuscript. All authors contributed to the interpretation of data discussed in the manuscript, revised the manuscript and approved its final version to be published. NL is the guarantor of this work and, as such, has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Gianluca Severi.

Ethics declarations

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Ethics approval

The study received ethical approval from the French National Commission for Data Protection and Privacy (Commission Nationale Informatique et Libertés). The protocol is registered at clinicaltrials.gov as NCT03285230.

Consent to participate

All participants signed informed consent in compliance with the rules of the French National Commission for Computed Data and Individual Freedom (Commission Nationale Informatique et Libertés).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., MacDonald, CJ., El Fatouhi, D. et al. The associations of the Palaeolithic diet alone and in combination with lifestyle factors with type 2 diabetes and hypertension risks in women in the E3N prospective cohort. Eur J Nutr 60, 3935–3945 (2021). https://doi.org/10.1007/s00394-021-02565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02565-5

Keywords

Navigation