Skip to main content

Advertisement

Log in

Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts).

Methods

Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs.

Results

Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions.

Conclusion

Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

c-miRNAs:

Circulating miRNAs

lncRNAs:

Long non-coding RNAs

MedDiet:

Mediterranean Diet

miRNAs/miR:

MicroRNAs

mRNA:

Messenger RNA

RBP:

RNA-binding proteins

RT-qPCR:

Quantitative reverse transcription polymerase chain reaction

PUFAs:

Poly-unsaturated fatty acids

References

  1. Nawaz M, Shah N, Zanetti B et al (2018) Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. Cells 7:167. https://doi.org/10.3390/cells7100167

    Article  PubMed Central  CAS  Google Scholar 

  2. Zheng R, Du M, Wang X et al (2018) Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer 17:143. https://doi.org/10.1186/s12943-018-0880-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Conigliaro A, Fontana S, Raimondo S, Alessandro R (2017) Exosomes: nanocarriers of biological messages. Adv Exp Med Biol 998:23–43. https://doi.org/10.1007/978-981-10-4397-0_2

    Article  PubMed  CAS  Google Scholar 

  4. Camussi G, Deregibus MC, Bruno S et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848. https://doi.org/10.1038/ki.2010.278

    Article  PubMed  CAS  Google Scholar 

  5. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. https://doi.org/10.1038/nrd3978

    Article  PubMed  CAS  Google Scholar 

  6. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. In: Rao M (ed) Long non coding RNA biology Advances in experimental medicine and biology, vol 1008. Springer, Singapore, pp 1–46. https://doi.org/10.1007/978-981-10-5203-3_1

    Chapter  Google Scholar 

  7. Ramos AD, Andersen RE, Liu SJ et al (2015) The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447. https://doi.org/10.1016/j.stem.2015.02.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cipolla G, de Oliveira J, Salviano-Silva A et al (2018) Long non-coding RNAs in multifactorial diseases: another layer of complexity. Non-Coding RNA 4:13. https://doi.org/10.3390/ncrna4020013

    Article  PubMed Central  CAS  Google Scholar 

  9. Chang T-C, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genom Hum Genet 8:215–239. https://doi.org/10.1146/annurev.genom.8.080706.092351

    Article  CAS  Google Scholar 

  10. Jaquenod De Giusti C, Santalla M, Das S (2019) Exosomal non-coding RNAs (Exo-ncRNAs) in cardiovascular health. J Mol Cell Cardiol 137:143–151. https://doi.org/10.1016/j.yjmcc.2019.09.016

    Article  PubMed  CAS  Google Scholar 

  11. Berrondo C, Flax J, Kucherov V et al (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE 11:e0147236. https://doi.org/10.1371/journal.pone.0147236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ahadi A, Brennan S, Kennedy PJ et al (2016) Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci Rep 6:24922. https://doi.org/10.1038/srep24922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 72:69–82. https://doi.org/10.1016/j.phrs.2013.03.011

    Article  PubMed  CAS  Google Scholar 

  14. Liu G, Zheng X, Xu Y et al (2015) Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin Med J (Engl) 128:91–97. https://doi.org/10.4103/0366-6999.147824

    Article  CAS  Google Scholar 

  15. López de las Hazas MC, Gil-Zamorano J, Cofán M, et al (2020) One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr. https://doi.org/10.1007/s00394-020-02390-2

    Article  PubMed  Google Scholar 

  16. Canfrán-Duque A, Pastor Ó, Quintana-Portillo R et al (2014) Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 58:687–697. https://doi.org/10.1002/mnfr.201300350

    Article  PubMed  CAS  Google Scholar 

  17. Rippe JM (2018) Lifestyle medicine: the health promoting power of daily habits and practices. Am J Lifestyle Med 12:499–512. https://doi.org/10.1177/1559827618785554

    Article  PubMed  PubMed Central  Google Scholar 

  18. Otsuka K, Yamamoto Y, Matsuoka R, Ochiya T (2018) Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol Nutr Food Res 62:1700080. https://doi.org/10.1002/mnfr.201700080

    Article  CAS  Google Scholar 

  19. Estruch R, Ros E, Salas-Salvadó J et al (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378:e34. https://doi.org/10.1056/NEJMoa1800389

    Article  PubMed  CAS  Google Scholar 

  20. Babio N, Bulló M, Basora J et al (2009) Adherence to the Mediterranean diet and risk of metabolic syndrome and its components. Nutr Metab Cardiovasc Dis 19:563–570. https://doi.org/10.1016/j.numecd.2008.10.007

    Article  PubMed  CAS  Google Scholar 

  21. Estruch R, Ros E, Salas-Salvadó J et al (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. https://doi.org/10.1056/NEJMoa1800389

    Article  PubMed  Google Scholar 

  22. Ros E (2017) The PREDIMED study. Endocrinol Diabetes y Nutr 64:63–66. https://doi.org/10.1016/j.endinu.2016.11.003

    Article  Google Scholar 

  23. Cansanção K, Citelli M, Carvalho Leite N et al (2020) Impact of long-term supplementation with fish oil in individuals with non-alcoholic fatty liver disease: a double blind randomized placebo controlled clinical trial. Nutrients 12:3372. https://doi.org/10.3390/nu12113372

    Article  PubMed Central  CAS  Google Scholar 

  24. Alehagen U, Johansson P, Aaseth J et al (2017) Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE. https://doi.org/10.1371/journal.pone.0174880

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aganzo M, Montojo MT, López de las Hazas MC et al (2018) Customized dietary intervention avoids unintentional weight loss and modulates circulating miRNAs footprint in Huntington’s disease. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201800619

    Article  PubMed  Google Scholar 

  26. Mi H, Muruganujan A, Ebert D et al (2019) PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038

    Article  PubMed  CAS  Google Scholar 

  27. Fan Y, Siklenka K, Arora SK et al (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44:W135–W141. https://doi.org/10.1093/nar/gkw288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  Google Scholar 

  30. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  31. Schröder H, Fitó M, Estruch R et al (2011) A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 141:1140–1145. https://doi.org/10.3945/jn.110.135566

    Article  PubMed  CAS  Google Scholar 

  32. Pathan M, Fonseka P, Chitti SV et al (2019) Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47:D516–D519. https://doi.org/10.1093/nar/gky1029

    Article  PubMed  CAS  Google Scholar 

  33. Keerthikumar S, Chisanga D, Ariyaratne D et al (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428:688–692. https://doi.org/10.1016/j.jmb.2015.09.019

    Article  PubMed  CAS  Google Scholar 

  34. Kim DK, Kang B, Kim OY et al (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20384

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu D, Tahara H (2013) The role of exosomes and microRNAs in senescence and aging. Adv Drug Deliv Rev 65:368–375. https://doi.org/10.1016/j.addr.2012.07.010

    Article  PubMed  CAS  Google Scholar 

  36. Assmann TS, Riezu-Boj JI, Milagro FI, Martínez JA (2020) Circulating adiposity-related microRNAs as predictors of the response to a low-fat diet in subjects with obesity. J Cell Mol Med. https://doi.org/10.1111/jcmm.14920

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sofi F, Abbate R, Gensini GF, Casini A (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92:1189–1196. https://doi.org/10.3945/ajcn.2010.29673

    Article  PubMed  CAS  Google Scholar 

  38. Medina-Remón A, Casas R, Tressserra-Rimbau A et al (2017) Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol 83:114–128. https://doi.org/10.1111/bcp.12986

    Article  PubMed  CAS  Google Scholar 

  39. Ros E, Martínez-González MA, Estruch R et al (2014) Mediterranean diet and cardiovascular health: teachings of the PREDIMED Study. Adv Nutr 5:330S-336S. https://doi.org/10.3945/an.113.005389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. An T, Zhang J, Lv B et al (2019) Salvianolic acid B plays an anti-obesity role in high fat diet-induced obese mice by regulating the expression of mRNA, circRNA, and lncRNA. PeerJ 7:e6506. https://doi.org/10.7717/peerj.6506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li J, Li K, Gao J et al (2019) Endogenously synthesized n-3 polyunsaturated fatty acids in pregnant fat-1 mice decreases mammary cancer risk of female offspring by regulating expression of long noncoding RNAs. Mol Nutr Food Res 63:e1801150. https://doi.org/10.1002/mnfr.201801150

    Article  PubMed  CAS  Google Scholar 

  42. Huang B-B, Liu X-C, Qin X-Y et al (2018) Effect of high-fat diet on immature female mice and messenger and noncoding rna expression profiling in ovary and white adipose tissue. Reprod Sci. https://doi.org/10.1177/1933719118765966

    Article  PubMed  Google Scholar 

  43. Milella RA, Gasparro M, Alagna F et al (2020) Microarray data and pathway analyses of peripheral blood mononuclear cells from healthy subjects after a three weeks grape-rich diet. Data Br. https://doi.org/10.1016/j.dib.2020.105278

    Article  Google Scholar 

  44. Solanas M, Moral R, Garcia G et al (2009) Differential expression of H19 and vitamin D3 upregulated protein 1 as a mechanism of the modulatory effects of high virgin olive oil and high corn oil diets on experimental mammary tumours. Eur J Cancer Prev 18:153–161. https://doi.org/10.1097/CEJ.0b013e3283136308

    Article  PubMed  CAS  Google Scholar 

  45. Chen CY, Chen CC, Shieh TM et al (2018) Corylin suppresses hepatocellular carcinoma progression via the inhibition of epithelial-mesenchymal transition, mediated by long noncoding RNA GAS5. Int J Mol Sci. https://doi.org/10.3390/ijms19020380

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250. https://doi.org/10.1038/nrm3313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Scoditti E, Carpi S, Massaro M et al (2019) Hydroxytyrosol modulates adipocyte gene and mirna expression under inflammatory condition. Nutrients. https://doi.org/10.3390/nu11102493

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653. https://doi.org/10.1038/nature10112

    Article  PubMed  CAS  Google Scholar 

  49. Bhatia H, Verma G, Datta M (2014) MiR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta Gene Regul Mech 1839:334–343. https://doi.org/10.1016/j.bbagrm.2014.02.009

    Article  CAS  Google Scholar 

  50. Thibonnier M, Esau C (2019) Metabolic benefits of microRNA-22 Inhibition. Nucleic Acid Ther. https://doi.org/10.1089/nat.2019.0820

    Article  PubMed  Google Scholar 

  51. Ortega FJ, Cardona-Alvarado MI, Mercader JM et al (2015) Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J Nutr Biochem 26:1095–1101. https://doi.org/10.1016/j.jnutbio.2015.05.001

    Article  PubMed  CAS  Google Scholar 

  52. Hernández-Alonso P, Giardina S, Salas-Salvadó J et al (2017) Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur J Nutr 56:2181–2191. https://doi.org/10.1007/s00394-016-1262-5

    Article  PubMed  CAS  Google Scholar 

  53. Esposito K, Maiorino MI, Ceriello A, Giugliano D (2010) Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract 89:97–102. https://doi.org/10.1016/j.diabres.2010.04.019

    Article  PubMed  CAS  Google Scholar 

  54. Schwingshackl L, Schwedhelm C, Galbete C, Hoffmann G (2017) Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients 9:1063. https://doi.org/10.3390/nu9101063

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the volunteers who participate in this study. DCM-E is a fellow of “Centro de Estudios Interdisciplinarios Básicos y Aplicados” (CEIBA), Colombia, through the program “Bolívar Gana con Ciencia”. M.C.L.H and L.D.P. were recipients of contracts supported by Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid, Fondo Social Europeo, and Iniciativa de Empleo Juvenil YEI (PEJD‐2016/BIO‐2781 and PEJD-2017-PRE/BIO-5100, respectively). JS-S is partially supported by ICREA under the ICREA Academy programme. 

Funding

This research was funded by grants from the Fundación Ramón Areces (CIVP18A3888) to AD, JTC, MCC, RMH, JS-S and MB; and by the Spanish “Agencia Estatal de Investigación” and European FEDER Funds to AD and RMH (AGL2016-78922-R and PID2019-109369RB-I00), to MCLH (RTI2018-093873-A-I00) and “NutriEpigen” Network to AD, MCLH and MB (AGL2017-90623-REDT). PREDIMED study was granted by the official funding agency for biomedical research of the Spanish government, Instituto de Salud Carlos III, through grants provided to research networks specifically developed for the trial (RTIC G03/140 and RTIC RD 06/0045) and through Centro de Investigación Biomédica The Fundación Patrimonio Comunal Olivarero and Hojiblanca (Malaga, Spain), California Walnut Commission (Sacramento, California), Borges (Reus, Spain), and Morella Nuts (Reus, Spain) donated the olive oil, walnuts, almonds and hazelnuts, respectively, used in the study.

Author information

Authors and Affiliations

Authors

Contributions

AD, MB and JS-S conceived the idea. DCM-E, MCLH, MCC, JTC and L.D.P. performed experiments. RM-H performed bioinformatic analysis. DCM-E, MCLH, MCC, JTC, RM-H and AD wrote the manuscript. AD, MB and JS-S revised and edited the manuscript. All authors revised the manuscript before submission.

Corresponding author

Correspondence to Alberto Dávalos.

Ethics declarations

Conflict of interest

Prof. Jordi Salas-Salvadó reports serving on the board of the International Nut and Dried Fruit Council, and the Eroski Foundation and receiving grant support from these entities through his institution. He also reports serving on the Executive Committee of the Instituto Danone Spain. He reports receiving consulting fees or travel expenses from Danone; the California Walnut Commission, the Eroski Foundation, the Instituto Danone—Spain, Nestlé, Abbot Laboratories, and Font Vella Lanjarón. Dr. Salas-Salvadó reports non-financial support from California Walnut Commission, Sacramento CA, USA, non-financial support from Patrimonio Comunal Olivarero, Spain, non-financial support from La Morella Nuts, Spain, non-financial support from Borges S.A., Spain, during the conduct of the study. All the other authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 676 kb)

Supplementary file2 (XLSX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantilla-Escalante, D.C., López de las Hazas , MC., Crespo, M.C. et al. Mediterranean diet enriched in extra-virgin olive oil or nuts modulates circulating exosomal non-coding RNAs. Eur J Nutr 60, 4279–4293 (2021). https://doi.org/10.1007/s00394-021-02594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02594-0

Keywords

Navigation