Skip to main content
Log in

Activation of sphingosine kinase by muscarinic receptors enhances NO-mediated and attenuates EDHF-mediated vasorelaxation

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Local formation of the sphingomyelin metabolite sphingosine-1-phosphate (S1P) within the vascular wall has been shown to modulate vascular reactivity. In this study we investigated whether sphingosine kinase, the enzyme responsible for S1P synthesis, plays a role in muscarinic receptor-mediated NO production and vascular relaxation in different blood vessel types. For this purpose, sphingosine kinase translocation and sphingolipid-dependent NO-production after muscarinic receptor stimulation were assessed in an endothelial cell line. Furthermore, we used the sphingosine kinase inhibitor N,N-dimethylsphingosine (DMS) to investigate the role of sphingosine kinase in the relaxant responses to the muscarinic agonist methacholine (MCh) in isolated rat aorta and mesenteric arteries. Activation of M3-receptors in an endothelial cell line induced a fast translocation of YFP-tagged sphingosine kinase-1 from the cytosol to the plasma membrane. Concomitant NO-production in this cell line was partially inhibited by DMS. Accordingly, in rat aorta the relaxant responses to MCh were attenuated in the presence of DMS, while the responses to the NO-donor sodium nitroprusside were unaltered. In contrast, DMS enhanced the relaxant responses to MCh in mesenteric artery preparations. This effect could also be observed in the presence of NO synthase and cyclooxygenase inhibitors, indicating that sphingosine kinase inhibition specifically enhanced endothelium-derived hyperpolarizing factor-mediated (i.e. non-NO and non-prostacyclin-dependent) relaxation. We conclude that sphingosine kinase differentially regulates vascular tone in different vessel types, enhancing NO-dependent vasorelaxation but counteracting EDHF-dependent vasorelaxation. This observation enhances our understanding of the complex mechanisms by which sphingolipids regulate vascular homeostasis. Moreover, a disturbed regulation of sphingolipid metabolism in the vascular wall may therefore play a role in the aetiology/pathology of disease states characterized by endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alewijnse AE, Peters SL, Michel MC (2004) Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. Br J Pharmacol 143:666–684

    Article  PubMed  CAS  Google Scholar 

  2. Alewijnse AE, Peters SL (2008) Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 585:292–302

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307

    Article  PubMed  CAS  Google Scholar 

  4. Brattelid T, Tveit K, Birkeland JA, Sjaastad I, Qvigstad E, Krobert KA, Hussain RI, Skomedal T, Osnes JB, Levy FO (2007) Expression of mRNA encoding G protein-coupled receptors involved in congestive heart failure—a quantitative RT- PCR study and the question of normalisation. Basic Res Cardiol 102:198–208

    Article  PubMed  CAS  Google Scholar 

  5. Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, Pyne S, Tigyi G (2002) International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev 54:265–269

    Article  PubMed  CAS  Google Scholar 

  6. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  PubMed  CAS  Google Scholar 

  7. Dahm F, Nocito A, Bielawska A, Lang KS, Georgiev P, Asmis LM, Bielawski J, Madon J, Hannun YA, Clavien PA (2006) Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. J Thromb Haemost 4:2704–2709

    Article  PubMed  CAS  Google Scholar 

  8. De Palma C, Meacci E, Perrotta C, Bruni P, Clementi E (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor-α through neutral sphingomyelinase 2, sphingosine kinase-1, and sphingosine-1-phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26:99–105

    Article  PubMed  Google Scholar 

  9. Edsall LC, Van Brocklyn JR, Cuvillier O, Kleuser B, Spiegel S (1998) N,N-dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37:12892–12898

    Article  PubMed  CAS  Google Scholar 

  10. Feletou M, Vanhoutte PM (2006) Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol 26:1215–1225

    Article  PubMed  CAS  Google Scholar 

  11. Hanel P, Andreani P, Graler MH (2007) Erythrocytes store and release sphingosine-1-phosphate in blood. FASEB J 21:1202–1209

    Article  PubMed  Google Scholar 

  12. Hemmings DG (2006) Signal transduction underlying the vascular effects of sphingosine-1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 373:18–29

    Article  PubMed  CAS  Google Scholar 

  13. Hendriks-Balk MC, Michel MC, Alewijnse AE (2007) Pitfalls in the normalization of real-time polymerase chain reaction data. Basic Res Cardiol 102:195–197

    Article  PubMed  CAS  Google Scholar 

  14. Igarashi J, Bernier SG, Michel T (2001) Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. J Biol Chem 276:12420–12426

    Article  PubMed  CAS  Google Scholar 

  15. Kwan CY, Zhang WB, Sim SM, Deyama T, Nishibe S (2004) Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size. Naunyn Schmiedebergs Arch Pharmacol 369:473–480

    Article  PubMed  CAS  Google Scholar 

  16. Lee EH, Lee YK, Im YJ, Kim JH, Okajima F, Im DS (2006) Dimethylsphingosine regulates intracellular pH and Ca2+ in human monocytes. J Pharmacol Sci 100:289–296

    Article  PubMed  CAS  Google Scholar 

  17. Levade T, Auge N, Veldman RJ, Cuvillier O, Negre-Salvayre A, Salvayre R (2001) Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 89:957–968

    Article  PubMed  CAS  Google Scholar 

  18. Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585:193–201

    PubMed  CAS  Google Scholar 

  19. Montesano R, Pepper MS, Möhle-Steinlein U, Risau W, Wagner EF, Orci L (1990) Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445

    Article  PubMed  CAS  Google Scholar 

  20. Mulders AC, Hendriks-Balk MC, Mathy MJ, Michel MC, Alewijnse AE, Peters SL (2006) Sphingosine kinase-dependent activation of endothelial nitric oxide synthase by angiotensin II. Arterioscler Thromb Vasc Biol 26:2043–2048

    Article  PubMed  CAS  Google Scholar 

  21. Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F (2000) Interaction of sphingosine-1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352 Pt 3:809–815

    Article  PubMed  CAS  Google Scholar 

  22. Nagao T, Illiano S, Vanhoutte PM (1992) Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-l-arginine in rats. Am J Physiol 263:H1090-H1094

    PubMed  CAS  Google Scholar 

  23. Peters SL, Alewijnse AE (2007) Sphingosine-1-phosphate signaling in the cardiovascular system. Curr Opin Pharmacol 7:186–192

    Article  PubMed  CAS  Google Scholar 

  24. Pyne S, Pyne NJ (2000) Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349:385–402

    Article  PubMed  CAS  Google Scholar 

  25. Roviezzo F, Bucci M, Delisle C, Brancaleone V, Di Lorenzo A, Mayo IP, Fiorucci S, Fontana A, Gratton JP, Cirino G (2006) Essential requirement for sphingosine kinase activity in eNOS-dependent NO release and vasorelaxation. FASEB J 20:340–342

    PubMed  CAS  Google Scholar 

  26. Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt A, Geigenmüller S, Völker W, Buddecke E (2006) The antiatherogenic and antiinflammatory effect of HDL-associated lysosphingolipids operates via Akt  → NF- kappaB signalling pathways in human vascular endothelial cells. Basic Res Cardiol 101:109–116

    Article  PubMed  CAS  Google Scholar 

  28. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711

    Article  PubMed  CAS  Google Scholar 

  29. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  30. Van Koppen CJ, Meyer Zu Heringdorf D, Alemany R, Jakobs KH (2001) Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 68:2535–2540

    Article  PubMed  Google Scholar 

  31. Wattenberg BW, Pitson SM, Raben DM (2006) The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 47:1128–1139

    Article  PubMed  CAS  Google Scholar 

  32. Yatomi Y, Ozaki Y, Ohmori T, Igarashi Y (2001) Sphingosine 1-phosphate: synthesis and release. Prostaglandins Other Lipid Mediat 64:107–122

    Article  PubMed  CAS  Google Scholar 

  33. Yatomi Y, Ruan F, Hakomori S, Igarashi Y (1995) Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86:193–202

    PubMed  CAS  Google Scholar 

  34. Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S, Noda K, Okajima F, Saku K (2005) Correlation of high density lipoprotein (HDL)-associated sphingosine-1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis 178:199–205

    Article  PubMed  CAS  Google Scholar 

  35. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406

    Google Scholar 

  36. Zhang C, Park Y, Picchi A, Potter BJ (2008) Maturation-induces endothelial dysfunction via vascular inflammation in diabetic mice. Basic Res Cardiol 103:407–416

    Google Scholar 

  37. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH, Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan L. M. Peters PhD.

Additional information

Returned for 1. Revision: 29 January 2008 1. Revision received: 23 May 2008 Returned for 2. Revision: 25 June 2008 2. Revision received: 7 July 2008 Returned for 3. Revision: 23 July 2008 3. Revision received: 28 July 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulders, A.C.M., Mathy, MJ., Meyer zu Heringdorf, D. et al. Activation of sphingosine kinase by muscarinic receptors enhances NO-mediated and attenuates EDHF-mediated vasorelaxation. Basic Res Cardiol 104, 50–59 (2009). https://doi.org/10.1007/s00395-008-0744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0744-x

Keywords

Navigation