Skip to main content

Advertisement

Log in

Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia–reperfusion in hearts from cavin-1 +/+ and cavin-1 −/− mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 −/− hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 −/− mice. While peak contractile performance in ex vivo myocardium from cavin-1 −/− and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank–Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 −/− hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 −/− hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 −/− hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 −/− hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aboulaich N, Chui PC, Asara JM, Flier JS, Maratos-Flier E (2011) Polymerase I and transcript release factor regulates lipolysis via a phosphorylation-dependent mechanism. Diabetes 60:757–765. doi:10.2337/db10-0744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albinsson S, Shakirova Y, Rippe A, Baumgarten M, Rosengren BI, Rippe C, Hallmann R, Hellstrand P, Rippe B, Swärd K (2007) Arterial remodeling and plasma volume expansion in caveolin-1-deficient mice. Am J Physiol Regul Integr Comp Physiol 293:R1222–R1231. doi:10.1152/ajpregu.00092.2007

    Article  CAS  PubMed  Google Scholar 

  3. Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, Catestatin, improves the Frank–Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19. doi:10.1016/j.niox.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Barnabei MS, Palpant NJ, Metzger JM (2010) Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol Genomics 42A:103–113. doi:10.1152/physiolgenomics.00071.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339. doi:10.1038/416005a

    Article  CAS  PubMed  Google Scholar 

  6. Barua A, Standen NB, Galiñanes M (2010) Dual role of nNOS in ischemic injury and preconditioning. BMC Physiol 10:15. doi:10.1186/1472-6793-10-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez-Rojo M, Breen MR, Gygi SP, Vinten J, Walser PJ, North KN, Hancock JF, Pilch PF, Parton RG (2009) MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185:1259–1273. doi:10.1083/jcb.200903053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bice JS, Jones BR, Chamberlain GR, Baxter GF (2016) Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 111:23. doi:10.1007/s00395-016-0540-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bellott AC, Patel KC (1985) Burkholder TJ (2005) Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. J Appl Physiol 2005(98):1554–1561. doi:10.1152/japplphysiol.01070.2004

    Google Scholar 

  10. Bernatchez PN, Sharma A, Kodaman P, Sessa WC (2009) Myoferlin is critical for endocytosis in endothelial cells. Am J Physiol Cell Physiol 297:C484–C492. doi:10.1152/ajpcell.00498.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brodie BR, Grossman W, Mann T, McLaurin LP (1977) Effects of sodium nitroprusside on left ventricular diastolic pressure–volume relations. J Clin Invest 59:59–68. doi:10.1172/JCI108622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunner F, Maier R, Andrew P, Wölkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62. doi:10.1016/S0008-6363(02)00649-1

    Article  CAS  PubMed  Google Scholar 

  13. Cai C, Weisleder N, Ko JK, Komazaki S, Sunada Y, Nishi M, Takeshima H, Ma J (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem 284:15894–15902. doi:10.1074/jbc.M109.009589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calaghan S, White E (2006) Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Cardiovasc Res 69:816–824. doi:10.1016/j.cardiores.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  15. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293. doi:10.1085/jgp.108.4.277

    Article  CAS  PubMed  Google Scholar 

  16. Champion HC, Georgakopoulos D, Takimoto E, Isoda T, Wang Y, Kass DA (2004) Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ Res 94:657–663. doi:10.1161/01.RES.0000119323.79644.20

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Bakhshi FR, Shajahan AN, Sharma T, Mao M, Trane A, Bernatchez P, van Nieuw Amerongen GP, Bonini MG, Skidgel RA, Malik AB, Minshall RD (2012) Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell 23:1388–1398. doi:10.1091/mbc.E11-09-0811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng JP, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ (2015) Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 211:53–61. doi:10.1083/jcb.201504042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiu HS, York JP, Wilkinson L, Zhang P, Little MH, Pennisi DJ (2012) Production of a mouse line with a conditional Crim1 mutant allele. Genesis 50(9):711–716. doi:10.1002/dvg.22032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chow AK, Daniel EE, Schulz R (2010) Cardiac function is not significantly diminished in hearts isolated from young caveolin-1 knockout mice. Am J Physiol Heart Circ Physiol 299(4):H1183–H1189. doi:10.1152/ajpheart.01195.2009

    Article  CAS  PubMed  Google Scholar 

  21. Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474. doi:10.1152/ajpcell.00380.2002

    Article  CAS  PubMed  Google Scholar 

  22. Collins BM, Davis MJ, Hancock JF, Parton RG (2012) Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 23:11–20. doi:10.1016/j.devcel.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Csonka C, Szilvássy Z, Fülöp F, Páli T, Blasig IE, Tosaki A, Schulz R, Ferdinandy P (1999) Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts. Circulation 100:2260–2266. doi:10.1161/01.CIR.100.22.2260

    Article  CAS  PubMed  Google Scholar 

  24. Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817. doi:10.1152/ajpheart.00772.2005

    Article  PubMed  CAS  Google Scholar 

  25. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367. doi:10.1016/S0140-6736(04)16048-0

    Article  CAS  PubMed  Google Scholar 

  26. Das M, Das S, Lekli I, Das DKJ (2012) Caveolin induces cardioprotection through epigenetic regulation. Cell Mol Med 16:888–895. doi:10.1111/j.1582-4934.2011.01372.x

    Article  CAS  Google Scholar 

  27. Depre C, Vanoverschelde JL, Goudemant JF, Mottet I, Hue L (1995) Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation 92:1911–1918. doi:10.1161/01.CIR.92.7.1911

    Article  CAS  PubMed  Google Scholar 

  28. Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD (2008) Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol 294:H2371–H2381. doi:10.1152/ajpheart.01279.2007

    Article  CAS  PubMed  Google Scholar 

  29. Ding SY, Lee MJ, Summer R, Liu L, Fried SK, Pilch PF (2014) Pleiotropic effects of cavin-1 deficiency on lipid metabolism. J Biol Chem 289:8473–8483. doi:10.1074/jbc.M113.546242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duncker DJ, Stubenitsky R, Tonino PA, Verdouw PD (2000) Nitric oxide contributes to the regulation of vasomotor tone but does not modulate O2-consumption in exercising swine. Cardiovasc Res 47:738–748. doi:10.1016/S0008-6363(00)00143-7

    Article  CAS  PubMed  Google Scholar 

  31. Felley-Bosco E, Bender FC, Courjault-Gautier F, Bron C, Quest AF (2000) Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci USA 97:14334–14339. doi:10.1073/pnas.250406797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814. doi:10.1074/jbc.271.37.22810

    Article  CAS  PubMed  Google Scholar 

  33. Feron O, Dessy C, Opel DJ, Arstall MA, Kelly RA, Michel T (1998) Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem 273:30249–30254. doi:10.1074/jbc.273.46.30249

    Article  CAS  PubMed  Google Scholar 

  34. Flood AJ, Willems L, Headrick JP (2002) Coronary function and adenosine receptor-mediated responses in ischemic-reperfused mouse heart. Cardiovasc Res 55:161–170. doi:10.1016/S0008-6363(02)00329-2

    Article  CAS  PubMed  Google Scholar 

  35. Gambin Y, Ariotti N, McMahon KA, Bastiani M, Sierecki E, Kovtun O, Polinkovsky ME, Magenau A, Jung W, Okano S, Zhou Y, Leneva N, Mureev S, Johnston W, Gaus K, Hancock JF, Collins BM, Alexandrov K, Parton RG (2013) Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. eLife 3:e01434. doi:10.7554/eLife.01434

    PubMed  Google Scholar 

  36. García-Cardeña G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440. doi:10.1074/jbc.272.41.25437

    Article  PubMed  Google Scholar 

  37. Glukhov AV, Balycheva M, Sanchez-Alonso JL, Ilkan Z, Alvarez-Laviada A, Bhogal N, Diakonov I, Schobesberger S, Sikkel MB, Bhargava A, Faggian G, Punjabi PP, Houser SR, Gorelik J (2015) Direct evidence for microdomain-specific localization and remodeling of functional l-type calcium channels in rat and human atrial myocytes. Circulation 132:2372–2384. doi:10.1161/CIRCULATIONAHA.115.018131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gödecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204. doi:10.1111/j.1469-7793.2001.0195g.x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104:20612–20617. doi:10.1073/pnas.0706796104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorressen S, Stern M, van de Sandt AM, Cortese-Krott MM, Ohlig J, Rassaf T, Gödecke A, Fischer JW, Heusch G, Merx MW, Kelm M (2015) Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction. PLoS One 10:e0120961. doi:10.1371/journal.pone.0120961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gupte SA, Okada T (2001) Prostaglandins and nitric oxide mediate superoxide-induced myocardial contractile dysfunction in isolated rat hearts. J Mol Cell Cardiol 33:1107–1117. doi:10.1006/jmcc.2001.1371

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi T, Arimura T, Ueda K, Shibata H, Hohda S, Takahashi M, Hori H, Koga Y, Oka N, Imaizumi T, Yasunami M, Kimura A (2004) Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 313:178–184. doi:10.1016/j.bbrc.2003.11.101

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I (2009) Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119:2623–2633. doi:10.1172/Jci38660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015

    Article  CAS  PubMed  Google Scholar 

  45. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152 PMID: 10903999

    Article  CAS  PubMed  Google Scholar 

  46. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124. doi:10.1016/j.cell.2007.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horikawa YT, Patel HH, Tsutsumi YM, Jennings MM, Kidd MW, Hagiwara Y, Ishikawa Y, Insel PA, Roth DM (2008) Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 44:123–130. doi:10.1016/j.yjmcc.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  48. Hu A, Jiao X, Gao E, Koch WJ, Sharifi-Azad S, Grunwald Z, Ma XL, Sun JZ (2006) Chronic beta-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. J Pharmacol Exp Ther 318:469–475. doi:10.1124/jpet.106.102160

    Article  CAS  PubMed  Google Scholar 

  49. Israeli-Rosenberg S, Chen C, Li R, Deussen DN, Niesman IR, Okada H, Patel HH, Roth DM, Ross RS (2015) Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 29:374–384. doi:10.1096/fj.13-243139

    Article  CAS  PubMed  Google Scholar 

  50. Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I (1998) Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 17:2855–2864. doi:10.1093/emboj/17.10.2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jasmin JF, Rengo G, Lymperopoulos A, Gupta R, Eaton GJ, Quann K, Gonzales DM, Mercier I, Koch WJ, Lisanti M (2011) Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 300:H1274–H1281. doi:10.1152/ajpheart.01173.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karbalaei MS, Rippe C, Albinsson S, Ekman M, Mansten A, Uvelius B, Swärd K (2012) Impaired contractility and detrusor hypertrophy in cavin-1-deficient mice. Eur J Pharmacol 689:179–185. doi:10.1016/j.ejphar.2012.05.023

    Article  CAS  PubMed  Google Scholar 

  53. Kingma I, Smiseth OA, Belenkie I, Knudtson ML, MacDonald RP, Tyberg JV, Smith ER (1986) A mechanism for the nitroglycerin-induced downward shift of the left ventricular diastolic pressure–diameter relationship of patients. Am J Cardiol 57:673–677. doi:10.1016/0002-9149(86)90857-X

    Article  CAS  PubMed  Google Scholar 

  54. Kinugawa K, Takahashi T, Kohmoto O, Yao A, Aoyagi T, Momomura S, Hirata Y, Serizawa T (1994) Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res 75:285–295. doi:10.1161/01.RES.75.2.285

    Article  CAS  PubMed  Google Scholar 

  55. Klabunde RE, Kimber ND, Kuk JE, Helgren MC, Förstermann U (1992) N G-Methyl-l-arginine decreases contractility, cGMP and cAMP in isoproterenol-stimulated rat hearts in vitro. Eur J Pharmacol 223:1–7. doi:10.1016/0014-2999(92)90810-Q

    Article  CAS  PubMed  Google Scholar 

  56. Kovtun O, Tillu VA, Jung W, Leneva N, Ariotti N, Chaudhary N, Mandyam RA, Ferguson C, Morgan GP, Johnston WA, Harrop SJ, Alexandrov K, Parton RG, Collins BM (2014) Structural insights into the organization of the cavin membrane coat complex. Dev Cell 31:405–419. doi:10.1016/j.devcel.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  57. Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8:310–317. doi:10.1016/j.cmet.2008.07.00

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG (2015) The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 210:833–849. doi:10.1083/jcb.201501046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu XM, Zhang GX, Yu YQ, Kimura S, Nishiyama A, Matsuyoshi H, Shimizu J, Takaki M (2009) The opposite roles of nNOS in cardiac ischemia-reperfusion-induced injury and in ischemia preconditioning-induced cardioprotection in mice. J Physiol Sci 59:253–262. doi:10.1007/s12576-009-0030-1

    Article  CAS  PubMed  Google Scholar 

  60. Mankad P, Yacoub M (1997) Influence of basal release of nitric oxide on systolic and diastolic function of both ventricles. J Thorac Cardiovasc Surg 113:770–776. doi:10.1016/S0022-5223(97)70236-8

    Article  CAS  PubMed  Google Scholar 

  61. Martin C, Schulz R, Post H, Gres P, Heusch G (2003) Effect of NO synthase inhibition on myocardial metabolism during moderate ischemia. Am J Physiol Heart Circ Physiol 284:H2320–H2324. doi:10.1152/ajpheart.01122.2002

    Article  CAS  PubMed  Google Scholar 

  62. Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G (2007) Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. Cardiovasc Res 74:46–55. doi:10.1016/j.cardiores.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  63. Matheis G, Sherman MP, Buckberg GD, Haybron DM, Young HH, Ignarro LJ (1992) Role of l-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol 262:H616–H620 PMID: 1539723

    CAS  PubMed  Google Scholar 

  64. Merx MW, Gorressen S, van de Sandt AM, Cortese-Krott MM, Ohlig J, Stern M, Rassaf T, Gödecke A, Gladwin MT, Kelm M (2014) Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction. Basic Res Cardiol 109:398. doi:10.1007/s00395-013-0398-1

    Article  PubMed  CAS  Google Scholar 

  65. Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586. doi:10.1074/jbc.272.25.15583

    Article  CAS  PubMed  Google Scholar 

  66. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC (2007) Re-expression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204:2373–2382. doi:10.1084/jem.20062340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohsawa Y, Toko H, Katsura M, Morimoto K, Yamada H, Ichikawa Y, Murakami T, Ohkuma S, Komuro I, Sunada Y (2004) Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum Mol Genet 13:151–157. doi:10.1093/hmg/ddh014

    Article  CAS  PubMed  Google Scholar 

  68. Park KH, Rubin LE, Gross SS, Levi R (1992) Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase-derived metabolites. Circ Res 71:992–1001. doi:10.1161/01.RES.71.4.992

    Article  CAS  PubMed  Google Scholar 

  69. Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM (2007) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 21:1565–1574. doi:10.1096/fj.06-7719com

    Article  CAS  PubMed  Google Scholar 

  70. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112. doi:10.1083/jcb.201501046

    Article  CAS  PubMed  Google Scholar 

  71. Paulus WJ, Shah AM (1999) NO and cardiac diastolic function. Cardiovasc Res 43:595–606. doi:10.1016/S0008-6363(99)00151-0

    Article  CAS  PubMed  Google Scholar 

  72. Post H, d’Agostino C, Lionetti V, Castellari M, Kang EY, Altarejos M, Xu X, Hintze TH, Recchia FA (2003) Reduced left ventricular compliance and mechanical efficiency after prolonged inhibition of NO synthesis in conscious dogs. J Physiol 552:233–239. doi:10.1113/jphysiol.2003.048769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Post H, Schulz R, Behrends M, Gres P, Umschlag C, Heusch G (2000) No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J Mol Cell Cardiol 32(5):725–733. doi:10.1006/jmcc.2000.1117

    Article  CAS  PubMed  Google Scholar 

  74. Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397

    CAS  PubMed  Google Scholar 

  75. Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329. doi:10.1161/01.CIR.96.4.1320

    Article  CAS  PubMed  Google Scholar 

  76. Puybasset L, Béa ML, Ghaleh B, Giudicelli JF, Berdeaux A (1996) Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs. Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels. Circ Res 79:343–357. doi:10.1161/01.RES.79.2.343

    Article  CAS  PubMed  Google Scholar 

  77. Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lützkendorf S, Karbasiyan M, Bachmann S, Spuler S, Schuelke M (2010) Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet 6:e1000874. doi:10.1371/journal.pgen.1000874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rassaf T, Kleinbongard P, Preik M, Dejam A, Gharini P, Lauer T, Erckenbrecht J, Duschin A, Schulz R, Heusch G, Feelisch M, Kelm M (2002) Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical Study on the fate of NO in human blood. Circ Res 91:470–477 PMID: 12242264

    Article  CAS  PubMed  Google Scholar 

  79. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 9:1601–1610. doi:10.1161/CIRCRESAHA.114.303822

    Article  CAS  Google Scholar 

  80. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138. doi:10.1074/jbc.M105408200

    Article  CAS  PubMed  Google Scholar 

  81. Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP (2009) Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 94:54–70. doi:10.1113/expphysiol.2008.043554

    Article  CAS  PubMed  Google Scholar 

  82. Rizzo V, McIntosh DP, Oh P, Schnitzer JE (1998) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729. doi:10.1074/jbc.273.52.34724

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez G, Ueyama T, Ogata T, Czernuszewicz G, Tan Y, Dorn GW 2nd, Bogaev R, Amano K, Oh H, Matsubara H, Willerson JT, Marian AJ (2011) Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (MURC) as a causal gene for familial dilated cardiomyopathy. Circ Cardiovasc Genet 4:349–358. doi:10.1161/CIRCGENETICS.111.959866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schilling JM, Roth DM, Patel HH (2015) Caveolins in cardioprotection—translatability and mechanisms. Br J Pharmacol 172:2114–2125. doi:10.1111/bph.13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schilling JM, Horikawa YT, Zemljic-Harpf AE, Vincent KP, Tyan L, Yu JK, McCulloch AD, Balijepalli RC, Patel HH, Roth DM (2016) Electrophysiology and metabolism of caveolin-3-overexpressing mice. Basic Res Cardiol 111:28. doi:10.1007/s00395-016-0542-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Schulz R, Wambolt R (1995) Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischemia-reperfusion injury. Cardiovasc Res 30:432–439. doi:10.1016/S0008-6363(95)00064-X

    CAS  PubMed  Google Scholar 

  87. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  88. See Hoe LE, Schilling JM, Tarbit E, Kiessling CJ, Busija AR, Niesman IR, Du Toit E, Ashton KJ, Roth DM, Headrick JP, Patel HH, Peart JN (2014) Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 307:H895–H903. doi:10.1152/ajpheart.00081.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Smith RE, Palmer RM, Bucknall CA, Moncada S (1992) Role of nitric oxide synthesis in the regulation of coronary vascular tone in the isolated perfused rabbit heart. Cardiovasc Res 26:508–512. doi:10.1093/cvr/26.5.508

    Article  CAS  PubMed  Google Scholar 

  90. Song DW, Lee KE, Ryu JY, Jeon H, Kim Do H (2015) The molecular interaction of heart LIM protein (HLP) with RyR2 and caveolin-3 is essential for Ca2+-induced Ca2+ release in the heart. Biochem Biophys Res Commun 463:975–981. doi:10.1016/j.bbrc.2015.06.045

    Article  CAS  PubMed  Google Scholar 

  91. Swärd K, Albinsson S, Rippe C (2014) Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS One 9:e92428. doi:10.1371/journal.pone.0092428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C (2013) Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 1:e00008. doi:10.1002/PHY2.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa Chuva, Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568. doi:10.1038/nature15695

    Article  CAS  PubMed  Google Scholar 

  94. Taniguchi T, Maruyama N, Ogata T, Kasahara T, Nakanishi N, Miyagawa K, Naito D, Hamaoka T, Nishi M, Matoba S, Ueyama T (2016) PTRF/Cavin-1 deficiency causes cardiac dysfunction accompanied by cardiomyocyte hypertrophy and cardiac fibrosis. PLoS One 11:e0162513. doi:10.1371/journal.pone.0162513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Tsutsumi YM, Horikawa YT, Jennings MM, Kidd MW, Niesman IR, Yokoyama U, Head BP, Hagiwara Y, Ishikawa Y, Miyanohara A, Patel PM, Insel PA, Patel HH, Roth DM (2008) Cardiac- specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 118:1979–1988. doi:10.1161/CIRCULATIONAHA.108.788331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tune JD, Richmond KN, Gorman MW, Feigl EO (2000) Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101:2942–2948. doi:10.1161/01.CIR.101.25.2942

    Article  CAS  PubMed  Google Scholar 

  97. Ueeda M, Silvia SK, Olsson RA (1992) Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70:1296–1303. doi:10.1161/01.RES.70.6.1296

    Article  CAS  PubMed  Google Scholar 

  98. Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–2112. doi:10.1161/CIRCULATIONAHA.106.635268

    Article  CAS  PubMed  Google Scholar 

  99. Vila-Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873. doi:10.1038/ncb1001-867

    Article  CAS  Google Scholar 

  100. Volonte D, Galbiati F (2011) Polymerase I and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem 286:28657–28661. doi:10.1074/jbc.C111.235119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Walsh EK, Huang H, Wang Z, Williams J, de Crom R, van Haperen R, Thompson CI, Lefer DJ, Hintze TH (2004) Control of myocardial oxygen consumption in transgenic mice overexpressing vascular eNOS. Am J Physiol Heart Circ Physiol 287:H2115–H2121. doi:10.1152/ajpheart.00267.2004

    Article  CAS  PubMed  Google Scholar 

  102. Wang D, Yang XP, Liu YH, Carretero OA, LaPointe MC (1999) Reduction of myocardial infarct size by inhibition of inducible nitric oxide synthase. Am J Hypertens 12:174–182. doi:10.1016/S0895-7061(98)00235-0

    Article  CAS  PubMed  Google Scholar 

  103. Wang H, Kohr MJ, Traynham CJ, Wheeler DG, Janssen PM, Ziolo MT (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294:C1566–C1575. doi:10.1152/ajpcell.00367.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang P, Zweier JL (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 271:29223–29230. doi:10.1074/jbc.271.46.29223

    Article  CAS  PubMed  Google Scholar 

  105. Whiteley G, Collins RF, Kitmitto A (2012) Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor. J Biol Chem 287:40302–40316. doi:10.1074/jbc.M112.377085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wildhirt SM, Suzuki H, Horstman D, Weismüller S, Dudek RR, Akiyama K, Reichart B (1997) Selective modulation of inducible nitric oxide synthase isoenzyme in myocardial infarction. Circulation 96:1616–1623. doi:10.1161/01.CIR.96.5.1616

    Article  CAS  PubMed  Google Scholar 

  107. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J, Tang B, Jelicks LA, Kitsis RN, Christ GJ, Factor SM, Tanowitz HB, Lisanti MP (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997. doi:10.1074/jbc.M205511200

    Article  CAS  PubMed  Google Scholar 

  108. Wunderlich C, Schober K, Kasper M, Heerwagen C, Marquetant R, Ebner B, Forkmann M, Schoen S, Braun-Dullaeus RC, Schmeisser A, Strasser RH (2008) Nitric oxide synthases are crucially involved in the development of the severe cardiomyopathy of caveolin-1 knockout mice. Biochem Biophys Res Commun 377:769–774. doi:10.1016/j.bbrc.2008.10.068

    Article  CAS  PubMed  Google Scholar 

  109. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237. doi:10.1126/science.279.5348.234

    Article  CAS  PubMed  Google Scholar 

  110. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662. doi:10.1073/pnas.96.2.657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang Y, Ma Z, Hu W, Wang D, Jiang S, Fan C, Di S, Liu D, Sun Y, Yi W (2016) Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 111:45. doi:10.1007/s00395-016-0561-6

    Article  PubMed  CAS  Google Scholar 

  112. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291. doi:10.1172/JCI27100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zatta AJ, Headrick JP (2005) Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144:576–587. doi:10.1038/sj.bjp.0706099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99:11375–11380. doi:10.1073/pnas.172360799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, Zweier JL (2007) Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 292:H1541–H1550. doi:10.1152/ajpheart.00264.2006

    Article  CAS  PubMed  Google Scholar 

  116. Zhou L, Burnett AL, Huang PL, Becker LC, Kuppusamy P, Kass DA, Kevin Donahue J, Proud D, Sham JS, Dawson TM, Xu KY (2002) Lack of nitric oxide synthase depresses ion transporting enzyme function in cardiac muscle. Biochem Biophys Res Commun 294:1030–1035. doi:10.1016/S0006-291X(02)00599-5

    Article  CAS  PubMed  Google Scholar 

  117. Zhu H, Lin P, De G, Choi KH, Takeshima H, Weisleder N, Ma J (2011) Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J Biol Chem 286:12820–12824. doi:10.1074/jbc.C111.22144093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the excellent technical assistance of Sam Man Lee and statistical advice of Risto Bloigu, and use of the Australian Microscopy and Microanalysis Research Facility at the Center for Microscopy and Microanalysis at The University of Queensland. Fluorescence microscopy was performed at the Australian Cancer Research Foundation (ACRF)/Institute for Molecular Bioscience (IMB) Dynamic Imaging Facility for Cancer Biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert G. Parton or John P. Headrick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Sources of funding

This research was supported by grants and a fellowship from the National Health and Medical Research Council of Australia to RGP (Grant Numbers APP1037320, APP1058565 and APP569542) and a grant to WGT (APP1085996). MK was recipient of a fellowship from the Academy of Finland (Decision 266263).

Ethical standards

All animal experiments were approved by the University of Queensland Ethics Committee (SBMS/044/15/AIBN/IMB) and were performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaakinen, M., Reichelt, M.E., Ma, Z. et al. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 112, 24 (2017). https://doi.org/10.1007/s00395-017-0613-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0613-6

Keywords

Navigation