Skip to main content
Log in

A novel thermally-activated crosslinking agent for chitosan in aqueous solution: a rheological investigation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

The use of 2,5-dimethoxy-2,5-dihydrofuran (DHF) as a temperature-controlled gelation agent for chitosan under acidic conditions has been examined by dynamic oscillatory and viscometry techniques. In particular, the rate and extent of gelation have been examined over a range of different temperatures (40–98 °C), DHF concentrations (10–100 mM) and pH conditions (0.9–2.1). The gelation time, tG, decreases, and the maximum gelation rate increases substantially as a function of rising temperature. When fit with a simple Arrhenius function, the tG data yield an activation energy for gelation of 55±8 kJ mol-1. Gelation is found to occur on the shortest time-scale, and the strongest gels result, at the highest DHF concentrations investigated. Similarly, the gelation rate and gel strength are highest for the most acidic solution conditions examined. Experimental findings are interpreted in terms of a competition between the crosslinking reaction (which drives gel formation, and is initially dominant) and protolytic decomposition of chitosan (which disrupts the gel structure, and becomes increasingly important as time progresses). Syneresis phenomena additionally impact results obtained at DHF concentrations ≥50 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme 1.
Scheme 2.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. The strict definition of tG has been considered in detail by Chambon and Winter [75, 76, 77], who defined it as the condition at which tan(G’’/G’) is independent of frequency. Their treatment requires accurate measurements of G’ and G’’ over a wide range of frequencies both before and after tG and additionally, requires that G’ and G’’ do not vary appreciably during each frequency sweep. Unfortunately, in the present study, G’ and G’’ were difficult to accurately assess prior to tG due to measurements being undertaken at the lower stress limit of the rheometer. In addition, during the gelation process, G’ and G’’ were often found to vary significantly over the duration of each frequency sweep. As a result, tG could not be accurately assessed using the treatment of Chambon and Winter [75, 76, 77]. The G’-G’’ crossover method of Tung and Dynes [78] was instead used and, while not providing a strict measure of tG, does allow a comparison of the crosslinking behaviour at a common stage of gelation. It is, however, worthy of note that given the change in δ from ca. 80° to ≤1° is rapid, particularly at the higher temperatures investigated (see Fig. 2), it is expected that the values of tG calculated using the G’-G’’ crossover method are in reasonable agreement with the Chambon and Winter gel point definition.

References

  1. Mathur NK, Narang CK (1990) J Chem Edu 67:938–942

    CAS  Google Scholar 

  2. Sandford PA, Hutchings GP (1987) Chitosan—a natural, cationic biopolymer: commercial applications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam

  3. Chirkov SN (2002) Appl Biochem Microbiol 38:1-8

    Article  CAS  Google Scholar 

  4. Tharanathan RN, Kittur FS (2003) Crit Rev Food Sci Nutrition 43:61–87

    CAS  Google Scholar 

  5. Shahidi F, Arachchi JKV, Jeon YJ (1999) Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  6. Kumar MNVR (2000) React Funct Polym 46:1-27

    Article  CAS  Google Scholar 

  7. Dutta PK, Ravikumar MN, Dutta J (2002) J Macromol Sci Polym Rev C42:307–354

    Article  CAS  Google Scholar 

  8. Singh DK, Ray AR (2000) J Macromol Sci Rev Macromol Chem Phys C40:69–83

    CAS  Google Scholar 

  9. Peter MG (1995) J Macromol Sci Pure Appl Chem A32:629–640

    CAS  Google Scholar 

  10. Borchard G (2001) Adv Drug Deliv Rev 52:145–150

    Article  CAS  PubMed  Google Scholar 

  11. Ueno H, Mori T, Fujinaga T (2001) Adv Drug Deliv Rev 52:105–115

    Article  CAS  PubMed  Google Scholar 

  12. Paul W, Sharma CP (2000) STP Pharma Sci 10:5-22

    CAS  Google Scholar 

  13. Struszczyk MH (2002) Polimery 47:396–403

    CAS  Google Scholar 

  14. Rathke TD, Hudson SM (1994) J Macromol Sci Rev Macromol Chem Phys C34:375–437

    CAS  Google Scholar 

  15. Dodane V, Vilivalam VD (1998) Pharm Sci Technol Today 1:246–253

    Article  CAS  Google Scholar 

  16. Amiji MM (1995) Carbohydrate Polym 26:211–213

    Article  CAS  Google Scholar 

  17. Ottoy MH, Varum KM, Christensen BE, Anthonsen MW, Smidsrod O (1996) Carbohydrate Polym 31:253–261

    Article  Google Scholar 

  18. Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Biomacromol 4:641–648

    Article  CAS  Google Scholar 

  19. Arguelles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Polym Gels Networks 6:429–440

    Article  CAS  Google Scholar 

  20. Roberts GAF, Taylor KE (1989) Makromol Chem 190:951–960

    Article  CAS  Google Scholar 

  21. Knaul JZ, Hudson SM, Creber KAM (1999) J Polym Sci B—Polym Phys 37:1079–1094

    Google Scholar 

  22. Wei YC, Hudson SM, Mayer JM, Kaplan DL (1992) J Polym Sci A—Polym Chem 30:2187–2193

    Google Scholar 

  23. Thacharodi D, Rao KP (1993) J Chem Technol Biotechnol 58:177–181

    CAS  PubMed  Google Scholar 

  24. Mi FL, Shyu SS, Lee ST, Wong TB (1999) J Polym Sci B—Polym Phys 37:1551–1564

    Google Scholar 

  25. Matsuyama H, Kitamura Y, Naramura Y (1999) J Appl Polym Sci 72:397–404

    Article  CAS  Google Scholar 

  26. Nakatsuka S, Andrady AL (1992) J Appl Polym Sci 44:17–28

    Article  CAS  Google Scholar 

  27. Thacharodi D, Rao KP (1993) Int J Pharm 96:33–39

    Article  CAS  Google Scholar 

  28. Thanoo BC, Sunny MC, Jayakrishnan A (1992) J Pharm Pharmacol 44:283–286

    CAS  PubMed  Google Scholar 

  29. Jameela SR, Kumary TV, Lal AV, Jayakrishnan A (1998) J Controlled Release 52:17–24

    Article  CAS  Google Scholar 

  30. Nigalaye AG, Adusumilli P, Bolton S (1990) Drug Dev Ind Pharm 16:449–467

    CAS  Google Scholar 

  31. Kawashima Y, Handa T, Kasai A, Takenaka H, Lin SY, Ando Y (1985) J Pharm Sci 74:264–268

    CAS  PubMed  Google Scholar 

  32. Hsien TY, Rorrer GL (1995) Sep Sci Technol 30:2455–2475

    CAS  Google Scholar 

  33. Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF (2000) Carbohydrate Polym 41:389–396

    Article  CAS  Google Scholar 

  34. Hou WM, Miyazaki S, Takada M, Komai T (1985) Chem Pharm Bull 33:3986–3992

    CAS  PubMed  Google Scholar 

  35. Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A (1996) J Pharm Pharmacol 48:685–688

    CAS  PubMed  Google Scholar 

  36. Filipovic-Grcic J, Becirevic-Lacan M, Skalko N, Jalsenjak I (1996) Int J Pharm 135:183–190

    Article  CAS  Google Scholar 

  37. Nishioka Y, Kyotani S, Okamura M, Miyazaki M, Okazaki K, Ohnishi S, Yamamoto Y, Ito K (1990) Chem Pharm Bull 38:2871–2873

    CAS  PubMed  Google Scholar 

  38. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS (2002) Int J Pharm 249:165–174

    Article  CAS  PubMed  Google Scholar 

  39. Hassan EE, Parish RC, Gallo JM (1992) Pharm Res 9:390–397

    Article  CAS  PubMed  Google Scholar 

  40. Shiraishi S, Imai T, Otagiri M (1993) J Controlled Release 25:217–225

    Article  CAS  Google Scholar 

  41. Akbuga J, Durmaz G (1994) Int J Pharm 111:217–222

    Article  CAS  Google Scholar 

  42. Jameela SR, Misra A, Jayakrishnan A (1994) J Biomat Sci Polym Ed 6:621–632

    CAS  Google Scholar 

  43. Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) J Macromol Sci Pure Appl Chem A31:629–642

    CAS  Google Scholar 

  44. Wan LSC, Lim LY, Soh BL (1994) STP Pharma Sci 4:195–200

    CAS  Google Scholar 

  45. Sezer AD, Akbuga J (1995) Int J Pharm 121:113–116

    Article  CAS  Google Scholar 

  46. Aydin Z, Akbuga J (1996) Int J Pharm 131:101–103

    Article  CAS  Google Scholar 

  47. Berthold A, Cremer K, Kreuter J (1996) J Controlled Release 39:17–25

    Article  CAS  Google Scholar 

  48. Kas HS (1997) J Microencapsulation 14:689–711

    CAS  PubMed  Google Scholar 

  49. Al Helw AA, Al Angary AA, Mahrous GM, Al Dardari MM (1998) J Microencapsulation 15:373–382

    PubMed  Google Scholar 

  50. Gupta KC, Kumar MNVR (1999) J Macromol Sci Pure Appl Chem A36:827–841

    Article  CAS  Google Scholar 

  51. Koseva N, Stoilova O, Manolova N, Rashkov I, Madec PJ (2001) J Bioactive Compat Polym 16:3-19

    Article  CAS  Google Scholar 

  52. Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) J Microencapsulation 19:173–180

    Article  CAS  PubMed  Google Scholar 

  53. Dini E, Alexandridou S, Kiparissides C (2003) J Microencapsulation 20:375–385

    CAS  PubMed  Google Scholar 

  54. Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, Mizoguchi T (1997) Biol Pharm Bull 20:708–710

    CAS  PubMed  Google Scholar 

  55. Senkoylu A, Simsek A, Sahin FI, Menevse S, Ozogul C, Denkbas EB, Piskin E (2001) J Bioactive Compat Polym 16:136–144

    Article  CAS  Google Scholar 

  56. Zeng X, Ruckenstein E (1998) J Membrane Sci 148:195–205

    Article  CAS  Google Scholar 

  57. Zeng X, Ruckenstein E (1998) Ind Eng Chem Res 37:159–165

    Article  CAS  Google Scholar 

  58. Vincent T, Guibal E (2002) Ind Eng Chem Res 41:5158–5164

    Article  CAS  Google Scholar 

  59. Kurita K (1987) Binding of metal cations by chitin derivatives: improvement of adsorption ability through chemical modifications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam

  60. Ohga K, Kurauchi Y, Yanase H (1987) Bull Chem Soc Jpn 60:444–446

    Google Scholar 

  61. Hsien TY, Rorrer GL (1997) Ind Eng Chem Res 36:3631–3638

    Article  CAS  Google Scholar 

  62. Kawamura Y, Yoshida H, Asai S, Kurahashi I, Tanibe H (1997) Sep Sci Technol 32:1959–1974

    CAS  Google Scholar 

  63. Guibal E, Milot C, Roussy J (1999) Wat Environ Res 71:10–17

    CAS  Google Scholar 

  64. Ruiz M, Sastre AM, Zikan MC, Guibal E (2001) J Appl Polym Sci 81:153–165

    Article  CAS  Google Scholar 

  65. Yang Z, Zhuang L, Tan G (2002) J Appl Polym Sci 85:530–535

    Article  CAS  Google Scholar 

  66. Juang RS, Shao HJ (2002) Adsorption 8:71–78

    Article  CAS  Google Scholar 

  67. Chiou MS, Li HY (2002) J Hazard Mat 93:233–248

    Article  CAS  Google Scholar 

  68. Oshita K, Oshima M, Gao YH, Lee KH, Motomizu S (2002) Anal Sci 18:1121–1125

    CAS  PubMed  Google Scholar 

  69. Ngah WSW, Endud CS, Mayanar R (2002) React Funct Polym 50:181–190

    Article  CAS  Google Scholar 

  70. Jaworska M, Kula K, Chassary P, Guibal E (2003) Polym Int 52:206–212

    Article  CAS  Google Scholar 

  71. Chiou MS, Li HY (2003) Chemosphere 50:1095–1105

    Article  CAS  PubMed  Google Scholar 

  72. Hansen EW, Holm KH, Jahr DM, Olafsen K, Stori A (1997) Polymer 38:4863–4871

    Article  CAS  Google Scholar 

  73. Johnson SB, Dunstan DE, Franks GV (2002) J Am Ceram Soc 85:1699–1705

    CAS  Google Scholar 

  74. Merkovich EA, Carruette ML, Babak VG, Vikhoreva GA, Gal’braikh LS, Kim VE (2001) Colloid J 63:350–354

    Article  CAS  Google Scholar 

  75. Chambon F, Winter HH (1985) Polym Bull 13:499–503

    CAS  Google Scholar 

  76. Winter HH, Chambon F (1986) J Rheol 30:367–382

    Article  Google Scholar 

  77. Chambon F, Winter HH (1987) J Rheol 31:683–697

    CAS  Google Scholar 

  78. Tung CYM, Dynes PJ (1982) J Appl Polym Sci 27:569–574

    Article  CAS  Google Scholar 

  79. Nolte H, John S, Smidsrod O, Stokke BT (1992) Carbohydrate Polym 18:243–251

    Article  CAS  Google Scholar 

  80. Park SJ, Kim TJ, Lee JR (2000) J Polym Sci B—Polym Phys 38:2114–2123

    Google Scholar 

  81. Domard A, Cartier N (1989) Int J Biol Macromol 11:297–302

    Article  CAS  PubMed  Google Scholar 

  82. Varum KM, Ottoy MH, Smidsrod O (2001) Carbohydrate Polym 46:89–98

    Article  CAS  Google Scholar 

  83. Mucha M (1997) Macromol Chem Phys 198:471–484

    Article  CAS  Google Scholar 

  84. Kienzle-Sterzer CA, Rodriguez-Sanchez D, Rha CK (1985) Polym Bull 13:1-6

    CAS  Google Scholar 

  85. Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Blackie Academic, London

    Google Scholar 

  86. Moore GK, Roberts GAF (1980) Int J Biol Macromol 2:73–77

    Article  CAS  Google Scholar 

  87. Claesson PM, Ninham BW (1992) Langmuir 8:1406–1412

    CAS  Google Scholar 

  88. Varum KM, Ottoy MH, Smidsrod O (1994) Carbohydrate Polym 25:65–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements.

Financial support for this work provided through the Australian Research Council’s Small Grants program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Franks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S.B., Dunstan, D.E. & Franks, G.V. A novel thermally-activated crosslinking agent for chitosan in aqueous solution: a rheological investigation. Colloid Polym Sci 282, 602–612 (2004). https://doi.org/10.1007/s00396-003-0985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0985-z

Keywords

Navigation