Skip to main content
Log in

Nanostructuration of soft hydrogels: synthesis and characterization of saccharidic methacrylate gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

With the tremendous development of biosensors, there is a strong need in new biocompatible materials avoiding possible denaturing of biological species, which can be easily processed with already existing technologies. The scope of this study was to develop new hydrogels which could be nanostructured by common lithographic methods. Therefore, new methacrylate hydrogels are described, which include functionalized monomers bearing either neutral groups, such as saccharidic moieties, anionic, or cationic groups. The gels have been synthesized by redox or photochemical-initiated radical polymerization. Their porosity has been characterized by thermoporometry, AFM, and electronic microscopy. The kinetics of the photocross-linking has been analyzed by piezorheometry on some of the materials and has been shown to be compatible with technological process time range. Although the obtained hydrogels are soft, their nanostructuration into 500-nm patterns could be performed by nanoimprint photolithography process, and these patterns were observed to be stable for several months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caykara T, Küçüktepe S, Turan E (2007) Swelling characteristics of thermosensitive poly[(2-diethylaminoethylmethacrylate)-co-(N, N-dimethylacrylamide)] porous hydrogels. Polym Int 56:532–537

    Article  CAS  Google Scholar 

  2. Winkelhausen E, Jovanovic-Malinovska R, Kuzmanova S, Cvetkovska M, Tsvetanov C (2008) hydrogels based on UV crosslinked poly(ethyleneoxide)—matrices for immobilization of Candida Boidinii cells for xylitol production. World J Microbiol Biotechnol 24:2035–2043

    Article  CAS  Google Scholar 

  3. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymer Adv Tech 21:27–47

    CAS  Google Scholar 

  4. Byrne ME, Oral E, Hilt JZ, Peppas NA (2002) networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)-containing films. Polym Adv Technol 13:798–816

    Article  CAS  Google Scholar 

  5. Hua ZD, Chen ZY, Li YZ, Zhao MP (2008) Thermosensitive and salt-selsitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 24:5773–5780

    Article  CAS  Google Scholar 

  6. Lin H-Y, Hsu C-Y, Thomas JL, Wang S-E, Chen H-C, Chou T-C (2006) The microcontact imprinting of proteins: the effect of crosslinking monomers for lysozyme, ribonuclease A and myoglobin. Biosens Bioelectron 22:534–543

    Article  CAS  Google Scholar 

  7. Takeuchi T, Hishiya T (2008) Molecular imprinting of proteins emerging as a tool for protein recognition. Org Biomol Chem 6:2459–2467

    Article  CAS  Google Scholar 

  8. Valvanuz Linares A, Vandevelde F, Pantigny J, Falcimaigne-Cordin A, Haupt K (2009) Polymer films composed of surface-bound nanofilaments with a high aspect ratio, molecularly imprinted with small molecules and proteins. Adv Funct Mater 19:1299–1303

    Article  Google Scholar 

  9. Takeuchi T, Goto D, Shinmori H (2007) Protein profiling by protein imprinted polymer array. Analyst 132:101–103

    Article  CAS  Google Scholar 

  10. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571

    Article  CAS  Google Scholar 

  11. Cau J-C, Lalo H, Peyrade J-P, Séverac C, Vieu C (2010) Method of seeking at least one analyte in a medium likely to contain it. Worldwide Patent WO2010029139A1, 18 Mar 2010

  12. Ye G, Li X, Wang X (2010) diffraction grating of hydrogel functionalized with glucose oxidase for glucose detection. Chem Comm 46:3872–3874

    Article  CAS  Google Scholar 

  13. Ye G, Wang X (2010) Polymer diffraction gratings on stimuli-responsive hydrogel surfaces: soft lithographic fabrication and optical sensing properties. Sensor Actuator, B 147:707–713

    Article  Google Scholar 

  14. Ye G, Yang C, Wang X (2010) Sensing diffraction gratings of antigen-responsive hydrogel for human immunoglobulin-G detection. Macromol Rapid Comm 31:1332–1336

    Article  CAS  Google Scholar 

  15. Fatimi A, Tassin J-F, Quillard S, Axelos MAV, Weiss P (2008) The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 29:533–543

    Article  CAS  Google Scholar 

  16. Miquelard-Garnier G, Demoures S, Creton C, Hourdet D (2006) Synthesis and rheological behavior of new hydrophobically modified hydrogels with tunable properties. Macromolecules 39:8128–8139

    Article  CAS  Google Scholar 

  17. Xia Y, Whitesides GM (1998) Angew Chem Int Ed Engl 37:550–575

    Article  CAS  Google Scholar 

  18. Revzin A, Russel RJ, Yadavalli VK, Koh W-G, Deister C, Hile DD, Mellott MB, Pishko MV (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447

    Article  CAS  Google Scholar 

  19. Ju H, McCloskey BD, Sagle AC, Kusuma VA, Freeman B (2009) Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J Membr Sci 330:180–188

    Article  CAS  Google Scholar 

  20. Park S, Lee Y, Kim DN, Park S, Jang E, Koh W-G (2009) Entrapment of enzyme-linked magnetic nanoparticles within poly(ethylen glycol) hydrogel microparticles prepared by photopatterning. React Funct Polym 69:293–299

    Article  CAS  Google Scholar 

  21. Cattoni A, Cambril E, Decanini D, Faini G, Haghiri-Gosnet AM (2010) Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold. Microelectr Eng 87:1015–1018

    Article  CAS  Google Scholar 

  22. Hua F, Sun Y, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang J, Geil P, Shim M, Rogers JA (2004) Nano Lett 4:2467–2471

    Article  CAS  Google Scholar 

  23. Schmitt H, Frey L, Ryssel H, Rommel M, Lehrer C (2007) UV nanoimprint materials: surface energies, residual layers and imprint quality. J Vac Sci Technol B 25(3):785–790

    Article  CAS  Google Scholar 

  24. Lee BK, Lee HY, Kim P, Suh KY, Kawai T (2009) Nanoarrays of tethered lipid bilayer rafts on poly(vinyl alcohol) hydrogels. Lab Chip 9:132–139

    Article  CAS  Google Scholar 

  25. Lee BK, Lee HY, Kim P, Suh KY, Seo JH, Cha HJ, Kawai T (2008) Stepwise self-assembly of a protein nanoarray from a nanoimprinted poly(ethyleneglycol) hydrogel. Small 4(3):342–348

    Article  CAS  Google Scholar 

  26. Hamouda F, Barbillon G, Gaucher F, Bartenlian B (2010) Sub-200 nm gap electrodes by soft UV nanoimprint lithography using polydimethylsiloxane mold without external pressure. J Vac Sci Technol B 28(1):82–85

    Article  CAS  Google Scholar 

  27. Ye X, Ding Y, duan Y, Liu H, Lu B (2009) Effects of exposure time on defects and demolding force in soft ultraviolet nanoimprint lithography. J Vac Sci Technol B 27(5):2091–2096

    Article  CAS  Google Scholar 

  28. Hamouda F, Barbillon G, Held S, Agnus G, Gogol P, Maroutian T, Scheuring S, Bartenlian B (2009) Nanoholes by soft UV nanoimprint lithography applied to study of membrane proteins. Microelectr Eng 86:583–585

    Article  CAS  Google Scholar 

  29. Plachetka U, Bender M, Fuchs A, Vratzov B, Glinsner T, Lindner F, Kurz H (2004) Wafer scale patterning by soft UV-nanoimprint lithography. Microelectr Eng 73–74:167–171

    Article  Google Scholar 

  30. Viheriälä J, Tommila J, Leinonen T, Dumitrescu M, Toikkanen L, Niemi T, Pessa M (2009) Applications of UV-nanomprint soft stamps in fabrication of single-frequency diode lasers. Microelectr Eng 86:321–324

    Article  Google Scholar 

  31. Koo N, Plachetka U, Otto M, Bolten J, Jeong J-H, Lee E-S, Kurz H (2008) The fabrication of a flexible mold for high resolution soft ultraviolet nanoimprint lithography. Nanotechnology 19:225304/225301–225304

    Google Scholar 

  32. Moran IWM, Cheng DF, Jhaveri SB, Carter KR (2008) High-resolution soft lithography of thin film resists enabling nanoscopic pattern transfer. Soft Matter 168:168–176

    Article  Google Scholar 

  33. Gaston A, Khokhar AZ, Bilbao L, Saez-Martinez V, Corres A, Obieta I, Gadegaard N (2010) Nanopatterned UV curable hydrogels for biomedical applications. Microelectr Eng 87:1057–1061

    Article  CAS  Google Scholar 

  34. Collin D, Auernhammer GK, Gavat O, Martinoty P, Brand HR (2003) Frozen-in magnetic order in uniaxial magnetic gels: preparation and physical properties. Macromol Rapid Comm 24(12):737–741

    Article  CAS  Google Scholar 

  35. Collin D, Lavalle P, Mendez Garza J, Voegel JC, Schaaf P, Martinoty P (2004) Macromolecules 37:10195

    Article  CAS  Google Scholar 

  36. Rogez D, Brand H, Finkelmann H, Martinoty P (2006) Macromol Chem Phys 207:735

    Article  CAS  Google Scholar 

  37. Collin D, Martinoty P (2003) Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Phys Stat Mech Appl 320(1–4):235–248

    Article  CAS  Google Scholar 

  38. Hay JN, Laity PR (2000) Polymer 41:6171–6180

    Article  CAS  Google Scholar 

  39. Brun M, Lallemand A, Quison J-F, Eyraud C (1977) Thermochim Acta 21:59–88

    Article  CAS  Google Scholar 

  40. Barea F, Bonatto D (2008) Relationships among carbohydrate intermediate metabolites and DNA damage and repair in yeast from a system biology perspective. Mutat Res Fund Mol Mech Mutagen 642(1–2):43–56

    Article  CAS  Google Scholar 

  41. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482

    Article  CAS  Google Scholar 

  42. Nakahara S, Raz A (2008) Biological modulation by lectins and their ligands in tumor progression and metastasis. Anti Canc Agents Med Chem 8(1):22–36

    Article  CAS  Google Scholar 

  43. Sawhney AS, Pathak CP, Hubbell JA (1993) Bioerodible hydrogels based on photopolymerized poly(ethy1eneglycol)-co-poly(a-hydroxy acid) diacrylate macromers. Macromolecules 26(4):581–587

    Article  CAS  Google Scholar 

  44. Waters DJ, Engberg K, Parke-Houben R, Hartmann L, Ta CN, Toney MF, Frank CW (2010) Morphology of photopolymerized end-linked poly(ethylene glycol) hydrogels by small-angle X-ray scattering. Macromolecules 43(16):6861–6870

    Article  CAS  Google Scholar 

  45. Wang B, Zhu W, Zhang Y, Yang Z, Ding J (2006) Synthesis of a chemically-crosslinked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs. React Funct Polym 66(5):509–518

    Article  CAS  Google Scholar 

  46. Huang C-W, Sun Y-M, huang W-F (1997) Curing kinetics of the synthesis of poly (2-hydroxyethylmethacrylate) (PHEMA) with ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. J Polym Sci, Part A: Polym Chem 35(10):1873–1889

    Article  CAS  Google Scholar 

  47. Wu Y-H, Park HB, Kai T, Freeman BD, Kalika DS (2010) Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels. J Membr Sci 347(1–2):197–208

    Article  CAS  Google Scholar 

  48. Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York

    Google Scholar 

  49. Vlachy V, Hribar-Lee B, Kalyuzhnyi YV, Dill KA (2004) Short-range interactions: from simple ions to polyelectrolyte solutions. Curr Opin Colloid Interface Sci 9:128–132

    Article  CAS  Google Scholar 

  50. Lin H, Zhou J, Yingle C, Gunasekaran S (2010) Synthesis and characterization of pH- and salt-responsive hydrogels based on etherificated sodium alginate. J Appl Polymer Sci 115:3161–3167

    Article  CAS  Google Scholar 

  51. Pourjavadi A, Salimi H (2008) New protein-based with superabsorbing properties: effect of monomer ratio on swelling behavior and kinetics. Ind Eng Chem Res 47:9206–9213

    Article  CAS  Google Scholar 

  52. Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433:27–50

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the InNaBioSanté foundation for the funding. M. Baba and D. Grande are thanked for the helpful discussions on thermoporometry. I. Fourqueaux, N. Benmeradi, and S. Balor from Toulouse Réseau Imagerie are acknowledged for their help in electronic microscopy. J.-P. Laugier from the Centre Commun de Microscopie in Nice University is greatly acknowledged for the SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliette Fitremann or Anne-Françoise Mingotaud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Information

SEM pictures of freeze-dried hydrogels, preliminary experiments of piezorheology, AFM profiles (DOC 7.17 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez Vilches, S., Séverac, C., Thibaut, C. et al. Nanostructuration of soft hydrogels: synthesis and characterization of saccharidic methacrylate gels. Colloid Polym Sci 289, 1437–1449 (2011). https://doi.org/10.1007/s00396-011-2465-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2465-1

Keywords

Navigation