Skip to main content
Log in

Hofmeister effects on the colloidal stability of poly(ethylene glycol)-decorated nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L−1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  2. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Quat Rev Biophys 30:241–277

    Article  CAS  Google Scholar 

  3. Leontidis E (2002) Monolayers, bilayers and micelles of zwitterionic lipids as model systems for the study of specific anion effects. Curr Opin Colloid Interface Sci 7:81–91

    Article  CAS  Google Scholar 

  4. Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1–18

    Article  CAS  Google Scholar 

  5. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  6. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS (2005) Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc 127:14505–14510

    Article  CAS  Google Scholar 

  7. Petrache HI, Zemb T, Belloni L, Parsegian VA (2006) Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc Natl Acad Sci 103:7982–7987

    Article  CAS  Google Scholar 

  8. Santos AP, Levin Y (2011) Ion specificity and the theory of stability of colloidal suspensions. Phys Rev Lett PRL 106:167801–167804

    Article  Google Scholar 

  9. Manciu M, Ruckenstein E (2007) On possible microscopic origins of the swelling of neutral lipid bilayers induced by simple salts. J Colloid Interface Sci 309:56–67

    Article  CAS  Google Scholar 

  10. Bonfá A, Saito RSN, França RFO, Fonseca BAL, Petri DFS (2011) Poly(ethylene glycol) decorated poly(methylmethacrylate) nanoparticles for protein adsorption. Mater Sci Eng C Biomim Mater Sensors Syst 31:562–566

    Article  Google Scholar 

  11. Lövgren U, Johansson M, Kronkvist K, Edholm LE (1995) Biocompatible sample pretreatment for immunochemical techniques using micellar liquid-chromatography for separation of corticosteroids. J Chromatogr B Biomed Sci Appl 672:33–44

    Article  Google Scholar 

  12. Zana R (2005) Dynamics in micellar solutions of amphiphilic block copolymers. In: Zana R (ed) Dynamics of surfactant self-assemblies. CRC, Taylor & Francis Group, New York, pp 161–231

    Chapter  Google Scholar 

  13. Gilbert R (1995) Emulsion polymerization: a mechanistic approach. Academic Press, London

    Google Scholar 

  14. Correia FM, Petri DFS, Carmona-Ribeiro AM (2004) Colloidal stability of lipid/polyelectrolyte decorated latex. Langmuir 20:9535–9540

    Article  CAS  Google Scholar 

  15. Reis EAO, Caraschi JC, Carmona-Ribeiro AM, Petri DFS (2003) Polyelectrolytes at charged particles: particle number density, molecular weight and charge ratio effects. J Phys Chem B 107:7993–7997

    Article  CAS  Google Scholar 

  16. Castro LBR, Soares KV, Naves AF, Carmona-Ribeiro AM, Petri DFS (2004) Synthesis of stable polystyrene and poly(methyl methacrylate) particles in the presence of caboxymethyl cellulose. Ind Eng Chem Res 43:7774–7779

    Article  CAS  Google Scholar 

  17. Guinier A, Fournet G (1955) Small angle scattering of X-Rays. Wiley, New York

    Google Scholar 

  18. Svergun DI, Feigin LA (1987) Structure analysis by small-angle X-ray and Neutron scattering. Plenum, New York

    Google Scholar 

  19. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, New York

    Google Scholar 

  20. Marignan J, Basserau DP (1986) Effect of pentanol and concentration on the micelles in the system OBS/water/1-pentanol. J Phys Chem 90:645–652

    Article  CAS  Google Scholar 

  21. Barbosa LRS, Caetano W, Itri R, Homem-De-Mello P, Santiago PS, Tabak M (2006) Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: small angle x-ray scattering, electronic absorption spectroscopy, and theoretical calculations. J Phys Chem B 110:13086–13093

    Article  CAS  Google Scholar 

  22. Sinibaldi R, Ortore MG, Mariani P (2007) Preferential hydration of lysozyme in water/glycerol mixtures: a small-angle neutron scattering study. J Chem Phys 126:235101–235110

    Article  Google Scholar 

  23. Sinibaldi R, Ortore MG, Spinozzi F, Funari SS, Teixeira J, Mariani P (2008) SANS/SAXS study of the BSA solvation properties in aqueous urea solutions via a global fit approach. Eur Biophys J 37:673–681

    Article  CAS  Google Scholar 

  24. Barbosa LRS, Ortore MG, Spinozzi F, Mariani P, Bernstorff S, Itri R (2010) The importance of protein–protein interactions on the pH-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study. Biophys J 98:147–157

    Article  CAS  Google Scholar 

  25. Barbosa LRS, Rigos CF, Yoneda JS, Itri R, Ciancaglini P (2010) Unraveling the Na, K-ATPase alpha(4) subunit assembling induced by large amounts of C(12)E(8) by means of small-angle X-ray scattering. J Phys Chem B 114:11371–11376

    Article  CAS  Google Scholar 

  26. Press WH, Teukolsky SA, Flannery BP (1994) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  27. Anderson A, Ashurst WR (2009) interfacial water structure on a highly hydroxylated silica film. Langmuir 25:11549–11554

    Article  CAS  Google Scholar 

  28. Zha L, Hu J, Wang C, Fu S, Luo M (2002) The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamide-co- dimethyl aminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121

    Article  CAS  Google Scholar 

  29. Hey MJ, Jackson DP, Yan H (2005) The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol). Polymer 46:2567–2572

    Article  CAS  Google Scholar 

  30. Schott H, Royce AE, Han SK (1984) Effect of inorganic additives on solutions of nonionic surfactants. Cloud points shift values of the individual ions. J Colloid Interface Sci 98:196–201

    CAS  Google Scholar 

  31. Weckström K, Zulauf M (1985) Lower consolute boundaries of a poly(oxyethylene) surfactant in aqueous-solutions of monovalent salts. J Chem Soc Faraday Trans 81:2947–2958

    Article  Google Scholar 

  32. Koshy L, Saiyad AH, Rakshit AK (1996) The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114. Colloid Polym Sci 274:582–587

    Article  CAS  Google Scholar 

  33. Schott H (1997) Effect of inorganic additives on solutions of nonionic surfactants. Effect of chaotropic anions on the cloud point of octoxynol 9 (Triton X-100). J Colloid Interface Sci 189:117–122

    Article  CAS  Google Scholar 

  34. Zheng LQ, Minamikawa H, Harada K, Inoue T, Chernik GG (2003) Effect of inorganic salts on the phase behavior of an aqueous mixture of heptaethylene glycol dodecyl ether. Langmuir 19:10487–10494

    Article  CAS  Google Scholar 

  35. Bloksma MM, Bakker DJ, Weber C, Hoogenboom R, Schubert US (2010) The effect of Hofmeister salts on the LCST transition of poly(2-oxazoline)s with varying hydrophilicity. Macromol Rapid Commun 31:724–728

    Article  CAS  Google Scholar 

  36. Denkova AG, Mendes E, Coppens MO (2008) Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. J Phys Chem B 112:793–801

    Article  CAS  Google Scholar 

  37. Luschtinetz F, Dosche C (2009) Determination of micelle diffusion coefficients with fluorescence correlation spectroscopy (FCS). J Colloid Interface Sci 338:312–315

    Article  CAS  Google Scholar 

  38. Barbosa LRS, Itri R, Tabak M, Caetano W (2003) Trifluoperazine effects on anionic and zwitterionic micelles: a study by small angle X-ray scattering. J Colloid Interface Sci 260:414–422

    Article  Google Scholar 

  39. Masuda Y, Nakanishi T (2002) Ion-specific swelling behavior of poly(ethylene oxide) gel and the correlation to the intrinsic viscosity of the polymer in salt solutions. Colloid Polym Sci 280:547–553

    Article  CAS  Google Scholar 

  40. Liu SQ, Joshi SC, Lam YC (2008) Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci 109:363–372

    Article  CAS  Google Scholar 

  41. Masuda Y, Tanaka T, Nakanishi T (2001) Ion-specific swelling behavior of poly(vinyl alcohol) gel prepared by gamma-ray irradiation. Colloid Polym Sci 279:1241–1244

    Article  CAS  Google Scholar 

  42. Samanta S, Ghosh P (2011) Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants. Chem Eng Res Des 89:2344–2355

    Article  CAS  Google Scholar 

  43. Sachs JN, Woolf TB (2003) Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. J Am Chem Soc 125:8742–8743

    Article  CAS  Google Scholar 

  44. Aroti A, Leontidis E, Maltseva E, Brezesinski G (2004) Effects of Hofmeister anions on DPPC Langmuir monolayers at the air–water interface. J Phys Chem B 108:15238–15245

    Article  CAS  Google Scholar 

  45. Santos AP, Diehl A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26:10778–10783

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, CAPES and FAPESP (Grant # 2010/51219-4) for financial support. J.O.S. thanks Pró-Reitoria de Graduação da Universidade de São Paulo for the undergraduate stipend. The authors are also in debt with Prof. Paolo Mariani and Franceco Spinozzi, both from Università Politecnica delle Marche, Ancona, Italy, who provided us the GENFIT software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise F. S. Petri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Schematic representation of Tween-20 molecule (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blachechen, L.S., Silva, J.O., Barbosa, L.R.S. et al. Hofmeister effects on the colloidal stability of poly(ethylene glycol)-decorated nanoparticles. Colloid Polym Sci 290, 1537–1546 (2012). https://doi.org/10.1007/s00396-012-2684-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2684-0

Keywords

Navigation