Skip to main content
Log in

One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper reports a phase inversion method for the preparation of macroporous polysulfone (PS) composite spheres through a single orifice spinneret. Surfactant F127 was pre-added in the polymer solution as a surface pore-forming agent, and different amount of zeolitic imidazolate framework-8 (ZIF-8) particles were incorporated to form the ZIF-8/polysulfone (ZIF-8/PS)-composite spheres. ZIF-8 and polymer acted as the adsorbent and binder in the final composite spheres, respectively. The fabrication conditions, such as the types of the surfactant, the amount of the surfactant, and ZIF-8 added in the polymer solution, were investigated. Nitrogen and carbon dioxide sorption analysis indicated the ZIF-8/PS composite spheres had similar properties as the pure ZIF-8 particles, and the active sites of ZIF-8 in the polymer composites were well exposed. The composite spheres exhibited advantages of easy handling and recycling over ZIF-8 particles, and this phase inversion method can be extended to prepare other polymer composite spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Li JR, Ma YG, McCarthy MC, Sculley J, Yu JM, Jeong HK, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    Article  CAS  Google Scholar 

  2. Zhao ZX, Li Z, Lin YS (2009) Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Ind Eng Chem Res 48:10015–10020

    Article  CAS  Google Scholar 

  3. James SL (2003) Metal-organic frameworks. Chem Soc Rev 32:276–288

    Article  CAS  Google Scholar 

  4. Czaja AU, Trukhan N, Muller U (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38:1284–1293

    Article  CAS  Google Scholar 

  5. Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, Stoddart JF (2010) Metal-organic frameworks from edible natural products. Angew Chem Int Ed 49:8630–8634

    Article  CAS  Google Scholar 

  6. Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191

    Article  CAS  Google Scholar 

  7. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:16000–16001

    Article  CAS  Google Scholar 

  8. Li Y, Liang F, Bux H, Yang W, Caro J (2010) Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J Membr Sci 354:48–54

    Article  CAS  Google Scholar 

  9. Cravillon J, Muenzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412

    Article  CAS  Google Scholar 

  10. Liu DF, Wu YB, Xia QB, Li Z, Xi HX (2013) Experimental and molecular simulation studies of carbon dioxide adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified. Adsorption 19:25–37

    Article  CAS  Google Scholar 

  11. Yao JF, Chen RZ, Wang K, Wang HT (2013) Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous Mesoporous Mater 165:200–204

    Article  CAS  Google Scholar 

  12. Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S, Duren T (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902

    Article  CAS  Google Scholar 

  13. O’Neill LD, Zhang HF, Bradshaw D (2010) Macro-/microporous MOF composite beads. J Mater Chem 20:5720–5726

    Article  Google Scholar 

  14. Thornton AW, Dubbeldam D, Liu MS, Ladewig BP, Hill AJ, Hill MR (2012) Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy Environ Sci 5:7637–7646

    Article  CAS  Google Scholar 

  15. Li LX, Yao JF, Chen RZ, He L, Wang K, Wang HT (2013) Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous Mesoporous Mater 168:15–18

    Article  CAS  Google Scholar 

  16. Yao JF, Dong DH, Li D, He L, Xu GS, Wang HT (2011) Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun 47:2559–2561

    Article  CAS  Google Scholar 

  17. Aguado S, Canivet J, Farrusseng D (2010) Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem Commun 46:7999–8001

    Article  CAS  Google Scholar 

  18. Zhang H, Cooper AI (2002) Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chem Mater 14:4017–4020

    Article  CAS  Google Scholar 

  19. Zhang HF, Cooper AI (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1:107–113

    Article  CAS  Google Scholar 

  20. Zhou D, Zhang LN, Zhou JP, Guo SL (2004) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650

    Article  CAS  Google Scholar 

  21. Loeb S, Sourirajan S (1963) Sea water demineralization by means of an osmotic membrane. Adv Chem Ser 38:117–132

    Article  CAS  Google Scholar 

  22. Yao JF, Wang K, Ren MR, Liu JZ, Wang HT (2012) Phase inversion spinning of ultrafine hollow fiber membranes through a single orifice spinneret. J Membr Sci 421:8–14

    Article  Google Scholar 

  23. Mulijani S, Mulanawati A (2012) Enhanced performance of asymmertic polystyrene membrane by incorporation of pluronic F127 and its application for pervaporation separation. Procedia Chem 4:360–366

    Article  CAS  Google Scholar 

  24. Yao JF, He M, Wang K, Chen RZ, Zhong ZX, Wang HT (2013) High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 15:3601–3606

    Article  CAS  Google Scholar 

  25. Guillen GR, Pan YJ, Li MH, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817

    Article  CAS  Google Scholar 

  26. Song QL, Nataraj SK, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA, Sivaniah E (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Australian Research Council and Monash University. H.W. thanks the Australian Research Council for a Future Fellowship. J.Y. acknowledges the support of Monash University through the Monash Fellowship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Yao or Huanting Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Yao, J., Xiao, P. et al. One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid Polym Sci 291, 2711–2717 (2013). https://doi.org/10.1007/s00396-013-3024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3024-8

Keywords

Navigation