Skip to main content
Log in

1D-polyaniline starting from self-assembled systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The radical polymerization of aniline hydrochloride (ANIHCl) in the presence of ammonium persulfate was studied. 1D-Polyaniline (PANI) with fibrillar morphologies was obtained in the presence of anionic surfactants. The changes of the PANI-template structures in aqueous solution were studied using static fluorescence measurements. The dispersed PANI nanoparticles were characterized using dynamic light scattering, scanning electron microscopy (SEM), and Raman and Fourier transform infrared spectroscopies. The thermal analysis and the electrical conductivity of the dried samples were also performed. The fluorescence measurements indicated that nanocrystals of ANIHCl form in water complexes with the anionic surfactants at smaller concentrations than the critical micellar concentration. The same method revealed that other organic complexes with sulfonate groups do not induce an increase of the hydrophobic region due to short hydrocarbon tails. The SEM micrographs and Raman spectra revealed that the PANI nanofibers are compact and different compared to the nanoparticles prepared without surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang D, Wang Y (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater Sci Eng B Solid State Mater Adv Technol 134:9–19

    Article  CAS  Google Scholar 

  2. Ćirić-Marjanović G (2010) Polyaniline nanostructures. In: Eftekhari A (ed) Nano-structured conductive polymers. Wiley, Chichester, pp 19–98

    Chapter  Google Scholar 

  3. Sun Q, Deng Y (2008) The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization. Mater Lett 62:1831–1834

    Article  CAS  Google Scholar 

  4. Petrov P, Mokreva P, Tsvetanov CB, Terlemezyan L (2008) Colloidal aqueous dispersion of polyaniline nanotubes grafted non-covalently with poly(ethylene oxide)-block-poly(acrylic acid) copolymer. Colloid Polym Sci 286:691–697

    Article  CAS  Google Scholar 

  5. Lu X, Yu Y, Chen L, Mao H, Zhang W, Wei Y (2004) Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem Commun 13:1522–1523

    Article  Google Scholar 

  6. Chang H, Yuan Y, Shi N, Guan Y (2007) Electrochemical DNA biosensor based polyaniline nanotube array. Anal Chem 79:5111–5115

    Article  CAS  Google Scholar 

  7. Wei Z, Zhang Z, Wan M (2002) Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir 18:917–921

    Article  CAS  Google Scholar 

  8. Yin ZH, Long YZ, Gu CZ, Wan MX, Duvail JL (2009) Current-voltage characteristics in individual polypyrrole nanotube, poly(3,4-ethylenedioxythiophene) nanowire, polyaniline nanotube, and CdS nanorope. Nanoscale Res Lett 4:63–69

    Article  CAS  Google Scholar 

  9. Li W, Wang HL (2004) Oligomer-assisted synthesis of chiral polyaniline nanofibers. J Am Chem Soc 126:2278–2279

    Article  CAS  Google Scholar 

  10. Cheng C, Jiang J, Tang R, Xi F (2004) Polyaniline nanostructures doped with mono-sulfonated dendrons via a self-assembly process. Synth Met 145:61–65

    Article  CAS  Google Scholar 

  11. Perrin FX, Phan TA, Nguyen DL (2015) Preparation and characterization of polyaniline in reversed micelles of decylphosphonic acid for active corrosion protection coatings. Eur Polym J 66:253–265

    Article  CAS  Google Scholar 

  12. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (1999) Polymerization of aniline in the presence of DBSA in aqueous dispersion. Synth Met 106:59–66

    Article  CAS  Google Scholar 

  13. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (2000) Polyaniline-DBSA/polymer blends prepared via aqueous dispersions. Synth Met 110:189–193

    Article  CAS  Google Scholar 

  14. Zhou C, Han J, Guo R (2009) Synthesis of polyaniline hierarchical structures in a dilute SDS/HCl solution: nanostructure-covered rectangular tubes. Macromolecules 42:1252–1257

    Article  CAS  Google Scholar 

  15. Qiu H, Zhai J, Li S, Jiang L, Wan M (2003) Oriented growth of self-assembled polyaniline nanowire arrays using a novel method. Adv Funct Mater 13:925–928

    Article  CAS  Google Scholar 

  16. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer 47:8253–8262

    Article  CAS  Google Scholar 

  17. Konyushenko EN, Stejskal J, Sedenkova I, Trchova M, Sapurina I, Cieslar M, Prokeš J (2006) Polyaniline nanotubes: conditions of formation. Polym Int 55:31–39

    Article  CAS  Google Scholar 

  18. Stejskal J, Sapurina I, Trchova M, Konyushenko E (2008) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536

    Article  CAS  Google Scholar 

  19. Donescu D, Fusulan L, Petcu C, Vasilescu M (1997) The properties of aqueous solutions of some short chain cosurfactants used for radical polymerization of vinyl acetate. Colloid Polym Sci 275:903–909

    Article  CAS  Google Scholar 

  20. Donescu D, Vasilescu M, Fusulan L, Petcu C (1999) Microemulsions of a vinyl acetate/2-ethylhexyl acrylate monomer mixture. Langmuir 15:27–31

    Article  CAS  Google Scholar 

  21. Lefrant S, Baibarac M, Baltog I (2009) Vibrational properties of composites based on polymer and carbon nanotubes. J Mate Chem 19:5690–5704

    Article  CAS  Google Scholar 

  22. Ghiurea M, Spataru CI, Donescu D, Constantinescu LM (2011) Aniline polymerization in ethanol-water mixtures. Mater Plast (Bucharest, Rom) 48:263–267

    CAS  Google Scholar 

  23. Dong DC, Winnik MA (1984) The Py scale of solvent polarities. Can J Chem 62:2560–2565

    Article  CAS  Google Scholar 

  24. Binama-Limbele W, Zana R (1987) Fluorescence probing of microdomains in aqueous solutions of polysoaps. 1. Use of pyrene to study the conformational state of polysoaps and their comicellization with cationic surfactants. Macromolecules 20:1331–1335

    Article  Google Scholar 

  25. Gerens H (1966) Critical micelle concentration. In: Brandrup I, Immergut EH (eds) Polymer handbook. Wiley, New York, pp II-399–II-419

    Google Scholar 

  26. Kronberg B, Castas M, Silvestonti R (1994) Understanding the hydrophobic effect. J Dispers Sci Technol 15:333–351

    Article  CAS  Google Scholar 

  27. Goel T, Kumbhakar M, Mukherjee T, Pal H (2010) Effect of sphere to rod transition on the probe microenvironment in sodium dodecyl sulphate micelles: a time resolved fluorescence anisotropy study. J Photochem Photobiol A 209:41–48

    Article  CAS  Google Scholar 

  28. Garg G, Hassan PA, Aswal VK, Kulshreshtha SK (2005) Tuning the structure of SDS micelles by substituted anilinium ions. J Phys Chem B 109:1340–1346

    Article  CAS  Google Scholar 

  29. Hassan PA, Sawant SN, Bagkar NC, Yakhmi JV (2004) Polyaniline nanoparticles prepared in rodlike micelles. Langmuir 20:4874–4880

    Article  CAS  Google Scholar 

  30. Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Polyaniline–DBSA/organophilic clay nanocomposites: synthesis and characterization. Synth Met 128:115–120

    Article  CAS  Google Scholar 

  31. Chen T, Dong C, Li X, Gao J (2009) Thermal degradation mechanism of dodecylbenzene sulfonic acid-hydrochloric acid co-doped polyaniline. Polym Degrad Stab 94:1788–1794

    Article  CAS  Google Scholar 

  32. Quillard S, Louarn G, Lefrant S, MacDiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B: Condens Matter Mater Phys 50:12496–12508

    Article  Google Scholar 

  33. Lapkowski M, Berrada K, Quillard S, Louarnd G, Lefrant S, Pron A (1995) Electrochemical oxidation of polyaniline in nonaqueous electrolytes: “in situ” raman spectroscopic studies. Macromolecules 28:1233–1238

    Article  CAS  Google Scholar 

  34. Ping Z, Nauer GE, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc Faraday Trans 93:121–129

    Article  CAS  Google Scholar 

  35. Trchova M, Stejskal J, Prokes J (1991) Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline. Synth Met 101:840–841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Ghiurea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donescu, D., Ghiurea, M., Spătaru, C.I. et al. 1D-polyaniline starting from self-assembled systems. Colloid Polym Sci 293, 2515–2524 (2015). https://doi.org/10.1007/s00396-015-3645-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3645-1

Keywords

Navigation