Skip to main content
Log in

Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, magnetic hyperthermia, i.e., heating induced by an alternating magnetic field acting on a magnetic suspension, is considered in three main aspects. The first one regards the implementation of a simple device for producing AC magnetic fields. The second contribution concerns the comparison of the hyperthermia response (measured by the specific absorption rate (SAR)) of magnetite nanoparticles of two different sizes and of raw particles vs. polyelectrolyte-coated ones. An improvement is observed of the SAR values when the pH is fixed away from the isoelectric point or when the ionic strength is kept at low values. The addition of a polymer enhances significantly the stability of the suspensions and so does with the SAR values. Finally, we describe the implementation of a sort of magnetic hyperthermia applicator, avoiding the necessity of placing the magnetic sample inside the coil and making it of more practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davis ME (2012) Fighting cancer with nanoparticle medicines—the nanoscale matters. MRS Bull 37:828–835. doi:10.1557/mrs.2012.202

    Article  CAS  Google Scholar 

  2. Ferrari M (2008) Beyond drug delivery. Nat Nanotechnol 3:131–132. doi:10.1038/nnano.2008.46

    Article  CAS  Google Scholar 

  3. Caruso F, Hyeon T, Rotello VM (2012) Nanomedicine. Chem Soc Rev 41:2537–2538. doi:10.1039/c2cs90005j

    Article  CAS  Google Scholar 

  4. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627. doi:10.1038/nrd2591

    Article  CAS  Google Scholar 

  5. Nagahara LA, Ferrari M, Grodzinski P (2009) Nanofunctional materials in cancer research: challenges, novel methods, and emerging applications. MRS Bull 34:406–408. doi:10.1557/mrs2009.116

    Article  Google Scholar 

  6. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 36:R167–R181. doi:10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  7. Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 42:224001. doi:10.1088/0022-3727/42/22/224001

    Article  Google Scholar 

  8. Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292:2025–2052. doi:10.1007/s00396-014-3357-y

    Article  CAS  Google Scholar 

  9. Schmidt AM (2007) Thermoresponsive magnetic colloids. Colloid Polym Sci 285:953–966. doi:10.1007/s00396-007-1667-z

    Article  CAS  Google Scholar 

  10. Northrup EF (1926) Inductive heating. J Franklin Inst 201:221–244. doi:10.1016/s0016-0032(26)90811-9

    Article  Google Scholar 

  11. Strutt MJO (1927) On the theory of inductive heating. Annalen Der Physik 82:0605–0617

    Article  Google Scholar 

  12. Goldman L, Dreffer R (1976) Microwaves, magnetic iron particles and lasers as a combined test model for investigation of hyperthermia treatment of cancer. Arch Dermatol Res 257:227–232

    Article  CAS  Google Scholar 

  13. Block JB, Tabbarah H, Isacoff W, Drakes TP (1979) Chemotherapy of unresectable or recurrent metastatic malignant melanomas: an update. J Dermatol Surg Onc 5:118–123. doi:10.1111/j.1524-4725.1979.tb00624.x

    Article  CAS  Google Scholar 

  14. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606. doi:10.1097/00000658-195710000-00007

    Article  CAS  Google Scholar 

  15. Riechert T, Gabriel E, Asai A (1967) The removal of biologic tissue by means of inductive heating. Acta Neurochir 16:299–300

    CAS  Google Scholar 

  16. Lacroix LM, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911. doi:10.1063/1.3068195

    Article  Google Scholar 

  17. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172. doi:10.1016/j.jmmm.2013.11.006

    Article  CAS  Google Scholar 

  18. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396. doi:10.1016/j.jmmm.2008.05.023

    Article  CAS  Google Scholar 

  19. Deatsch AE, Evans BA (2013) Effect of concentration on heating efficiency of magnetic nanoparticles for application in magnetic hyperthermia. Biophys J 104:674A–674A. doi:10.1016/j.jmmm.2013.11.006

    Article  Google Scholar 

  20. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31:70–75. doi:10.1109/tbme.1984.325372

    Article  CAS  Google Scholar 

  21. Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Inteface Colloid Sci 166:8–23. doi:10.1016/j.cis.2011.04.003

    Article  CAS  Google Scholar 

  22. Coffey WT, Crothers DSF, Dormann JL, Geoghegan LJ, Kalmykov YP, Waldron JT, Wickstead AW (1995) Effect of an oblique magnetic field on the superparamagnetic relaxation time. Phys Rev B 52:15951–15965. doi:10.1103/PhysRevB.52.15951

    Article  CAS  Google Scholar 

  23. Coffey WT, Crothers DSF, Dormann JL, Geoghegan LJ, Kalmykov YP, Waldron JT, Wickstead AW (1995) The effect of an oblique magnetic-field on the superparamagnetic relaxation-time. J Magn Magn Mater 145:L263–L267. doi:10.1016/0304-8853(94)00863-9

    Article  CAS  Google Scholar 

  24. Coffey WT, Crothers DSF, Kalmykov YP, Waldron JT (1995) Constant-magnetic-field effect in Neel relaxation of single-domain ferromagnetic particles. Phys Rev B 51:15947–15956. doi:10.1103/PhysRevB.51.15947

    Article  CAS  Google Scholar 

  25. Obaidat IM, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89. doi:10.3390/nano5010063

    Article  Google Scholar 

  26. Leslie Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f

    Article  CAS  Google Scholar 

  27. Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357. doi:10.1016/j.jmmm.2003.09.001

    Article  CAS  Google Scholar 

  28. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374. doi:10.1016/s0304-8853(02)00706-0

    Article  CAS  Google Scholar 

  29. Ruta S, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci Rep 5:9090. doi:10.1038/srep09090

    Article  CAS  Google Scholar 

  30. Hergt R, Dutz S, Zeisberger M (2010) Validity limits of the Neel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnol 21:015706. doi:10.1088/0957-4484/21/1/015706

    Article  Google Scholar 

  31. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800. doi:10.3109/02656736.2013.822993

    Article  Google Scholar 

  32. Dutz S, Hergt R (2014) Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25:452001. doi:10.1088/0957-4484/25/45/452001

    Article  Google Scholar 

  33. Bakoglidis KD, Simeonidis K, Sakellari D, Stefanou G, Angelakeris M (2012) Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48:1320–1323. doi:10.1109/tmag.2011.2173474

    Article  CAS  Google Scholar 

  34. Roca AG, Vallejo-Fernandez G, O’Grady K (2011) An analysis of minor hysteresis loops of nanoparticles for hyperthermia. IEEE Trans Magn 47:2878–2881. doi:10.1109/tmag.2011.2157112

    Article  Google Scholar 

  35. Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Funct Mater 21:4573–4581. doi:10.1002/adfm.201101243

    Article  CAS  Google Scholar 

  36. Fortin J-P, Wilhelm C, Servais J, Menager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635. doi:10.1021/ja067457e

    Article  CAS  Google Scholar 

  37. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950. doi:10.1016/j.jmmm.2008.12.017

    Article  CAS  Google Scholar 

  38. Wang XM, Gu HC, Yang ZQ (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340. doi:10.1016/j.jmmm.2005.02.028

    Article  CAS  Google Scholar 

  39. Guibert C, Dupuis V, Peyre V, Fresnais J (2015) Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C 119:28148–28154. doi:10.1021/acs.jpcc.5b07796

    Article  CAS  Google Scholar 

  40. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17:1247–1248. doi:10.1109/tmag.1981.1061188

    Article  Google Scholar 

  41. Iglesias GR, Ruiz-Moron LF, Insa Monesma J, Duran JDG, Delgado AV (2007) An experimental method for the measurement of the stability of concentrated magnetic fluids. J Colloid Interf Sci 311:475–480. doi:10.1016/j.jcis.2007.03.063

    Article  CAS  Google Scholar 

  42. Pineiro-Redondo Y, Banobre-Lopez M, Pardinas-Blanco I, Goya G, Lopez-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383. doi:10.1186/1556-276x-6-383

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work from Junta de Andalucía, Spain (project PE2012-FQM-0694), University of Granada-CEI Biotic (BS27.2015), MICINN, Spain (project FIS2013-47666-C03-01-R), FEDER Funds, EU, and RYC-2014-16901 (MINECO) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Delgado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, G., Delgado, A., Kujda, M. et al. Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization. Colloid Polym Sci 294, 1541–1550 (2016). https://doi.org/10.1007/s00396-016-3918-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3918-3

Keywords

Navigation