Skip to main content
Log in

Preparation and characterization of dispersions based on chitosan and poly(styrene sulfonate)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Interpolyelectrolyte complexes (IPECs) were obtained by the mixture of solutions of chitosan and poly(sodium 4-styrene-sulfonate). The resultant dispersions were characterized using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Gyration radius from SAXS increased as sulfonate to aminium molar ratio, r SA , increased, while pair distance distributions, P(r), shifted to higher values of r, describing the process of particle formation as resultant from collapse of solubilized IPEC clusters in the form of solid particles, followed by nucleation of larger ones. Intensity correlation curves from DLS were used to obtain parameters related to Brownian motion of (or within) IPEC clusters. IPEC cluster dimension growth was related to characteristic relaxation rate and relaxation rate distribution width. Association of DLS-derived results to SAXS-resultant data yielded a description of nanoparticles made of solid IPEC clusters stabilized by solubilized IPEC species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myrick JM, Vendra VK, Krishnan S (2014) Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnol Rev 3:319–346. doi:10.1515/ntrev-2012-0050

    Article  CAS  Google Scholar 

  2. Mizrahy S, Peer D (2012) Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 41:2623–2640. doi:10.1039/c1cs15239d

    Article  CAS  Google Scholar 

  3. Dragan ES, Mihai M, Schwarz S (2009) Complex nanoparticles based on chitosan and ionic/nonionic strong polyanions: formation, stability, and application. ACS Appl Mater Interfaces 1:1231–1240. doi:10.1021/am900109u

    Article  CAS  Google Scholar 

  4. Neto CGD, Fernandes ALP, Santos AIB, et al (2005) Preparation and characterization of chitosan-based dispersions. Polym Int 54:659–666. doi:10.1002/pi.1738

    Article  Google Scholar 

  5. Stopilha RT, de Lima CRM, Pereira MR, Fonseca JLC (2016) Preparation of PEC’s based on chitosan and NaPMA. Colloids Surfaces A Physicochem Eng Asp 489:27–35. doi:10.1016/j.colsurfa.2015.08.040

    Article  CAS  Google Scholar 

  6. Fu JC, Schlenoff JB (2016) Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. J Am Chem Soc 138:980–990. doi:10.1021/jacs.5b11878

    Article  CAS  Google Scholar 

  7. de Lima CRM, Pereira MR, Fonseca JLC (2013) Equilibrium and kinetic aspects of sodium cromoglycate adsorption on chitosan: mass uptake and surface charging considerations. Colloids Surfaces B Biointerfaces 109:52–58. doi:10.1016/j.colsurfb.2013.03.025

    Article  Google Scholar 

  8. Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC (2012) Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements. Colloids Surfaces B Biointerfaces 100:222–228. doi:10.1016/j.colsurfb.2012.05.024

    Article  CAS  Google Scholar 

  9. Soares KSR, Fonseca JLC, Bitencourt MAO, et al (2012) Serum production against Tityus serrulatus scorpion venom using cross-linked chitosan nanoparticles as immunoadjuvant. Toxicon 60:1349–1354. doi:10.1016/j.toxicon.2012.09.010

    Article  Google Scholar 

  10. Oliveira MA, Ciarlini PC, Feitosa JPA, et al (2009) Chitosan/“angico” gum nanoparticles: synthesis and characterization. Mater Sci Eng C-Biomimetic Supramol Syst 29:448–451. doi:10.1016/j.msec.2008.08.032

    Article  CAS  Google Scholar 

  11. Daley ELH, Coleman RM, Stegemann JP (2015) Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy. J Mater Chem B 3:7920–7929. doi:10.1039/c5tb00934k

    Article  CAS  Google Scholar 

  12. Kaloti M, Bohidar HB (2010) Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions. Colloids and Surfaces B-Biointerfaces 81:165–173. doi:10.1016/j.colsurfb.2010.07.006

    Article  CAS  Google Scholar 

  13. Giacalone G, Hillaireau H, Capiau P, et al (2014) Stabilization and cellular delivery of chitosan-polyphosphate nanoparticles by incorporation of iron. J Control Release 194:211–219. doi:10.1016/j.jconrel.2014.08.022

    Article  CAS  Google Scholar 

  14. Antoniou J, Liu F, Majeed H, et al (2015) Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles. Colloids Surfaces a-Physicochemical Eng Asp 465:137–146. doi:10.1016/j.colsurfa.2014.10.040

    Article  CAS  Google Scholar 

  15. Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61:35–41. doi:10.1016/0378-5173(90)90041-2

    Article  CAS  Google Scholar 

  16. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanobiotechnology 5:205–218. doi:10.1002/wnan.1211

    Article  CAS  Google Scholar 

  17. Shiehzadeh F, Tafaghodi M (2016) Dry powder form of polymeric nanoparticles for pulmonary drug delivery. Curr Pharm Des 22:2549–2560. doi:10.2174/1381612822666160128150449

    Article  CAS  Google Scholar 

  18. Aravind UK, Mathew J, Aravindakumar CT (2007) Transport studies of BSA, lysozyme and ovalbumin through chitosan/polystyrene sulfonate multilayer membrane. J Memb Sci 299:146–155. doi:10.1016/j.memsci.2007.04.036

    Article  CAS  Google Scholar 

  19. Sarmento B, Ribeiro AJ, Veiga F, et al (2007) Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7:2833–2841. doi:10.1166/jnn.2007.609

    Article  CAS  Google Scholar 

  20. Martins AF, Monteiro JP, Bonafe EG, et al (2015) Bactericidal activity of hydrogel beads based on N,N,N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chinese Chem Lett 26:1129–1132. doi:10.1016/j.cclet.2015.04.032

    Article  CAS  Google Scholar 

  21. Liu P, Zhao XB (2013) Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Biotechnol J 8:847–84+. doi:10.1002/biot.201300093

    Article  CAS  Google Scholar 

  22. Cafaggi S, Russo E, Stefani R, et al (2007) Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release 121:110–123. doi:10.1016/j.jconrel.2007.05.037

    Article  CAS  Google Scholar 

  23. Izumrudov VA, Paraschuk VV, Sybachin AV (2006) Controlled phase separations in solutions of polyelectrolyte complexes—potential for gene delivery. J Drug Deliv Sci Technol 16:267–274

    Article  CAS  Google Scholar 

  24. Erbacher P, Zou SM, Bettinger T, et al (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339. doi:10.1023/a:1011981000671

    Article  CAS  Google Scholar 

  25. Rondon C, Argillier JF, Moan M, Calderon FL (2014) Formation of soft nanoparticles via polyelectrolyte complexation: a viscometric study. Oil Gas Sci Technol D Ifp Energies Nouv 69:387–395. doi:10.2516/ogst/2014015

    Article  CAS  Google Scholar 

  26. Shi L, Carn F, Boue F, et al (2013) Control over the electrostatic self-assembly of nanoparticle semiflexible biopolyelectrolyte complexes. Soft Matter 9:5004–5015. doi:10.1039/c3sm27138b

    Article  CAS  Google Scholar 

  27. Costalat M, Alcouffe P, David L, Delair T (2015) Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydr Polym 134:541–546. doi:10.1016/j.carbpol.2015.07.071

    Article  CAS  Google Scholar 

  28. Costalat M, Alcouffe P, David L, Delair T (2014) Controlling the complexation of polysaccharides into multi-functional colloidal assemblies for nanomedicine. J Colloid Interface Sci 430:147–156. doi:10.1016/j.jcis.2014.05.039

    Article  CAS  Google Scholar 

  29. Izumrudov VA, Volkova IF, Gorshkova MY (2010) Chitosan-based polyelectrolyte complexes soluble in enzyme-friendly pH range. Macromol Chem Phys 211:453–460. doi:10.1002/macp.200900369

    Article  CAS  Google Scholar 

  30. Peng B, Hao Y, Kang H, et al (2010) Aggregation behavior of N-carboxyethylchitosan in aqueous solution: effects of pH, polymer concentration, and presence of a gemini surfactant. Carbohydr Res 345:101–107. doi:10.1016/j.carres.2009.10.018

    Article  CAS  Google Scholar 

  31. Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC (2009) The kinetics of adsorption of tetracycline on chitosan particles. J Colloid Interface Sci 340:182–191. doi:10.1016/j.jcis.2009.08.016

    Article  CAS  Google Scholar 

  32. dos Santos ZM, Caroni ALPF, Pereira MR, et al (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344:2591–2595. doi:10.1016/j.carres.2009.08.030

    Article  Google Scholar 

  33. Bezerril LM, de Vasconcelos CL, Dantas TNC, et al (2006) Rheology of chitosan-kaolin dispersions. Colloids Surfaces A Physicochem Eng Asp 287:24–28. doi:10.1016/j.colsurfa.2006.03.017

    Article  CAS  Google Scholar 

  34. Rinaudo M, Milas M, Ledung P (1993) Characterization of chitosan—influence of ionic-strength and degree of acetylation on chain expansion. Int J Biol Macromol 15:281–285

    Article  CAS  Google Scholar 

  35. Petoukhov MV, Franke D, Shkumatov AV, et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350. doi:10.1107/s0021889812007662

    Article  CAS  Google Scholar 

  36. Degiorgio V, Piazza R (1996) Light scattering in colloid and interface science. Curr Opin Colloid Interface Sci 1:11–16. doi:10.1016/s1359-0294(96)80038-0

    Article  CAS  Google Scholar 

  37. Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819. doi:10.1246/bcsj.79.1799

    Article  CAS  Google Scholar 

  38. Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  CAS  Google Scholar 

  39. Wang W, Sande SA (2014) Monitoring of macromolecular dynamics during a chemical cross-linking process of hydroxyethylcellulose derivatives by dynamic light scattering. Eur Polym J 58:52–59. doi:10.1016/j.eurpolymj.2014.06.011

    Article  Google Scholar 

  40. Bienert R, Emmerling F, Thunemann AF (2009) The size distribution of “gold standard” nanoparticles. Anal Bioanal Chem 395:1651–1660. doi:10.1007/s00216-009-3049-5

    Article  CAS  Google Scholar 

  41. Tavares IS, Caroni ALPF, Neto AAD, et al (2012) Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surfaces B Biointerfaces 90:254–258. doi:10.1016/j.colsurfb.2011.10.025

    Article  CAS  Google Scholar 

  42. Fernandes ALP, Martins RR, Neto CGD, et al (2003) Characterization of polyelectrolyte effect in poly(acrylic acid) solutions. J Appl Polym Sci 89:191–196. doi:10.1002/app.12175

    Article  CAS  Google Scholar 

  43. da Silva GC, De Morais WA, Neto AAD, et al (2012) The relationship between rheology and dynamic light scattering for a xylene/water/ButOH/C12E9 microemulsion. Colloids Surfaces A Physicochem Eng Asp 397:42–47. doi:10.1016/j.colsurfa.2012.01.027

    Article  Google Scholar 

  44. dos Santos ZM, Pereira MR, Fonseca JLC (2013) Rheology and dynamic light scattering of octa-ethyleneglycol-monododecylether/chitosan solutions. Carbohydr Polym 98:321–330. doi:10.1016/j.carbpol.2013.05.092

    Article  Google Scholar 

  45. de Oliveira VAV, De Morais WA, Pereira MR, Fonseca JLC (2012) Dynamic light scattering in semidilute and concentrated chitosan solutions. Eur Polym J 48:1932–1939. doi:10.1016/j.eurpolymj.2012.07.017

    Article  Google Scholar 

  46. Bouchaud JP, Pitard E (2001) Anomalous dynamical light scattering in soft glassy gels. Eur Phys J E 6:231–236

    Article  CAS  Google Scholar 

  47. Cipelletti L, Ramos L (2002) Slow dynamics in glasses, gels and foams. Curr Opin Colloid Interface Sci 7:228–234. doi:10.1016/S1359-0294(02)00051-1

    Article  CAS  Google Scholar 

  48. Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Physics-Condensed Matter 17:R253–R285. doi:10.1088/0953-8984/17/6/R01

    Article  CAS  Google Scholar 

  49. de Morais WA, Pereira MR, Fonseca JLC (2012) Characterization of gelification of chitosan solutions by dynamic light scattering. Carbohydr Polym 87:2376–2380. doi:10.1016/j.carbpol.2011.11.002

    Article  Google Scholar 

  50. da Silva GC, Rossi CGFT, Dantas Neto AA, et al (2011) Characterization of wormlike micellar systems using DLS, rheometry and tensiometry. Colloids Surfaces A Physicochem Eng Asp 377:35–43. doi:10.1016/j.colsurfa.2010.12.016

    Article  Google Scholar 

  51. Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659

    Article  CAS  Google Scholar 

  52. Choi J, Kwak SY (2004) Concentration fluctuation and cooperative chain mobility of hyperbranched poly(epsilon-caprolactone)s investigated by photon correlation spectroscopy. Polymer (Guildf) 45:7173–7183. doi:10.1016/j.polymer.2004.07.049

    Article  CAS  Google Scholar 

  53. Pich A, Schiemenz N, Boyko V, Adler HJP (2006) Thermoreversible gelation of biodegradable polyester (PHBV) in toluene. Polymer (Guildf) 47:553–560. doi:10.1016/j.polymer.2005.11.070

    Article  CAS  Google Scholar 

  54. de Vasconcelos CL, Bezerril PM, Dantas TNC, et al (2007) Adsorption of bovine serum albumin on template-polymerized chitosan/poly(methacrylic acid) complexes. Langmuir 23:7687–7694. doi:10.1021/la700537t

    Article  Google Scholar 

  55. Mehravar E, Leiza JR, Asua JM (2016) Synthesis and characterization of comb-like acrylic-based polymer latexes containing nano-sized crystallizable domains. Polymer (Guildf) 84:167–177. doi:10.1016/j.polymer.2015.12.039

    Article  CAS  Google Scholar 

  56. Kabanov VA, Zezin AB (1984) Soluble interpolymeric complexes as a new class of synthetic poly-electrolytes. Pure Appl Chem 56:343–354. doi:10.1351/pac198456030343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Brazil’s Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Science without Borders Program, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Norte (PROPESQ-UFRN) for the financial support during the course of this work. The authors also thank Brazil’s LNLS for the financial support to use their installations for SAXS via the research proposal SAXS1-17065 “Caracterização de complexos polieletrolíticos à base de quitosana”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. C. Fonseca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, C.R.M., de Morais, W.A., Silva, G.T.M. et al. Preparation and characterization of dispersions based on chitosan and poly(styrene sulfonate). Colloid Polym Sci 295, 1071–1078 (2017). https://doi.org/10.1007/s00396-017-4099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4099-4

Keywords

Navigation