Skip to main content
Log in

Thixotropic yielding behavior of MLPS colloidal suspension

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The colloidal suspension of magnesium lithium phyllosilicate (MLPS), a synthetic clay that shows complex rheological behaviors, is a promising analogue for natural soft clay. The significant thixotropy of MLPS colloidal suspension controls the solid-liquid transition and affects the application of the material. In this work, the thixotropic yielding behaviors of MLPS with concentrations of 3, 4, 5, and 6 wt% were investigated utilizing rheological testing methods. The static and dynamic yield stresses measured by different methods were analyzed and compared. The flow curves of shear rate ramp tests show inapplicability in determining yield stresses due to shear banding, while the yield stresses obtained by shear stress ramp and oscillatory shear tests exhibit satisfactory consistency. Coupled with a structural kinetics equation, a thixotropic visco-plastic model incorporating static and dynamic yield stress was established to describe the thixotropic yielding behavior of MLPS suspension. The model parameters were conveniently determined via shear ramp tests and step change in shear rate tests with good fitting performance, and the concentration-dependent characteristics of the parameters were also discussed. Based on model prediction and experimental results, the interactions between shear stress, shear rate, and microstructure were analyzed in steady and transient states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahuja A, Potanin A, Joshi YM (2020) Two step yielding in soft materials. Adv Colloid Interf Sci 282:102179

    Article  CAS  Google Scholar 

  • Arachchige UN, Cruden AR, Weinberg R (2021) Laponite gels - visco-elasto-plastic analogues for geological laboratory modelling. Tectonophysics 805:228773

    Article  Google Scholar 

  • Armstrong M, Tussing J (2020) A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood. Phys Fluids 32(9):094111

    Article  CAS  Google Scholar 

  • Bala M, Zentar R, Boustingorry P (2019) Comparative study of the yield stress determination of cement pastes by different methods. Mater Struct 52(5):1–12

    Article  Google Scholar 

  • Bertelsen HS, Rogers BD, Galland O, Dumazer G, Benanni AA (2018) Laboratory modeling of coeval brittle and ductile deformation during magma emplacement into viscoelastic rocks. Front Earth Sci 6:199

    Article  Google Scholar 

  • Bonn D, Denn MM, Berthier L, Divoux T, Manneville S (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89(3):40

    Article  Google Scholar 

  • Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J (1999) Laponite: what is the difference between a gel and a glass? Langmuir 15(22):7534–7536

    Article  CAS  Google Scholar 

  • Bonn D, Tanase S, Abou B, Tanaka H, Meunier J (2002) Laponite: aging and shear rejuvenation of a colloidal glass. Phys Rev Lett 89(1):015701

    Article  Google Scholar 

  • Calabrese V, Varchanis S, Haward SJ, Tsamopoulos J, Shen AQ (2021) Structure-property relationship of a soft colloidal glass in simple and mixed flows. J Colloid Interface Sci 601:454–466

    Article  CAS  Google Scholar 

  • Cheng DCH (1986) Yield stress - a time-dependent property and how to measure it. Rheol Acta 25(5):542–554

    Article  CAS  Google Scholar 

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newton Fluid Mech 211:31–49

    Article  CAS  Google Scholar 

  • Cummins HZ (2007) Liquid, glass, gel: the phases of colloidal Laponite. J Non-Cryst Solids 353(41):3891–3905

    Article  CAS  Google Scholar 

  • de Matos PR, Pilar R, Casagrande CA, Gleize PJP, Pelisser F (2020) Comparison between methods for determining the yield stress of cement pastes. J Braz Soc Mech Sci Eng 42(1):1–13

    Article  Google Scholar 

  • Dimitriou CJ, McKinley GH (2014) A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter 10(35):6619–6644

    Article  CAS  Google Scholar 

  • Dinkgreve M, Denn MM, Bonn D (2017) “Everything flows?”: elastic effects on startup flows of yield-stress fluids. Rheol Acta 56(3):189–194

    Article  CAS  Google Scholar 

  • Dinkgreve M, Paredes J, Denn MM, Bonn D (2016) On different ways of measuring “the” yield stress. J Non-Newton Fluid Mech 238:233–241

    Article  CAS  Google Scholar 

  • Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Non-Newton Fluid Mech 139(1-2):21–30

    Article  CAS  Google Scholar 

  • Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials. Phys Rev Lett 105(22):225502

    Article  Google Scholar 

  • Iskander M, Bathurst RJ, Omidvar M (2015) Past, present, and future of transparent soils. Geotech Test J 38(5):557–573

    Article  Google Scholar 

  • Jatav S, Joshi YM (2017) Phase behavior of aqueous suspension of laponite: new insights with microscopic evidence. Langmuir 33(9):2370–2377

    Article  CAS  Google Scholar 

  • Knappe E, Manga M, Le Friant A, Scientists I (2020) Rheology of natural sediments and its influence on the settling of dropstones in hemipelagic marine sediment. Earth Space Sci 7(3):e2019EA000876

    Article  Google Scholar 

  • Larson RG, Wei YF (2019) A review of thixotropy and its rheological modeling. J Rheol 63(3):477–501

    Article  CAS  Google Scholar 

  • Le-Cao K, Phan-Thien N, Mai-Duy N, Ooi SK, Lee AC, Khoo BC (2020) A microstructure model for viscoelastic-thixotropic fluids. Phys Fluids 32(12)

  • Lin Y, Qin HT, Guo J, Chen JW (2021) Study on the rheological behavior of a model clay sediment. J Mar Sci Eng 9(1):81:81–89

    Article  Google Scholar 

  • Martin JD, Hu YT (2012) Transient and steady-state shear banding in aging soft glassy materials. Soft Matter 8(26):6940–6949

    Article  CAS  Google Scholar 

  • Mendes PRD, Alicke AA, Thompson RL (2014) Parallel-plate geometry correction for transient rheometric experiments. Appl Rheol 24(5):52721

    Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interf Sci 147-148:214–227

    Article  CAS  Google Scholar 

  • Mezger T (2020) The rheology handbook: for users of rotational and oscillatory rheometers. European Coatings, Hannover

    Book  Google Scholar 

  • Mezger TG (2012) The rheology handbook, 4th edn. Vincentz Network), (Hannover, Germany

    Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  Google Scholar 

  • Møller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77(4):041507

    Article  Google Scholar 

  • Moore F (1959) The rheology of ceramic slips and bodies. Trans Br Ceram Soc 58:470–494

    CAS  Google Scholar 

  • Morariu S, Bercea M (2013) Thixotropy and yield stress evaluation for clay aqueous despersions. Rev Roum Chim 58(2-3):145–152

    CAS  Google Scholar 

  • Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non-Newton Fluid Mech 102(2):157–178

    Article  CAS  Google Scholar 

  • Ong EES, O'Byrne S, Liow JL (2019) Yield stress measurement of a thixotropic colloid. Rheol Acta 58(6-7):383–401

    Article  CAS  Google Scholar 

  • Oza AU, Venerus DC (2021) The dynamics of parallel-plate and cone-plate flows. Phys Fluids 33(2):023102

    Article  CAS  Google Scholar 

  • Pujala RK, Bohidar HB (2013) Slow dynamics, hydration and heterogeneity in Laponite dispersions. Soft Matter 9(6):2003–2010

    Article  CAS  Google Scholar 

  • Que XZ, Jin Z, Hou YX, Zhou YC, Zhang YP (2022) Experimental study on the time-dependent characteristics of MLPS transparent soil strength. Materials 15(14):4990

    Article  CAS  Google Scholar 

  • Ramya KA, Srinivasan R, Deshpande AP (2020) Time dependent response of thixotropic systems: Insights from small amplitude oscillatory shear. Phys Fluids 32(1):013109

    Article  CAS  Google Scholar 

  • Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). J Rheol 54(6):1219–1242

    Article  CAS  Google Scholar 

  • Ruzicka B, Zaccarelli E (2011) A fresh look at the Laponite phase diagram. Soft Matter 7(24):1268–1286

    Article  CAS  Google Scholar 

  • Shakeel A, MacIver M, Kan P, Kirichek A, Chassagne C (2021) A rheological and microstructural study of two-step yielding in mud samples from a port area. Colloids Surf Physicochem Eng Aspects 624:126827

    Article  CAS  Google Scholar 

  • Suman K, Joshi YM (2018) Microstructure and soft glassy dynamics of an aqueous laponite dispersion. Langmuir 34(44):13079–13103

    Article  CAS  Google Scholar 

  • Suman K, Mittal M, Joshi YM (2020) Effect of sodium pyrophosphate and understanding microstructure of aqueous LAPONITE (R) dispersion using dissolution study. J Phys-Condens Matter 32(22):224002

    Article  CAS  Google Scholar 

  • Sun ZW, Kong GQ, Zhou Y, Shen Y, Xiao HY (2021) Thixotropy of a transparent clay manufactured using Carbopol to simulate marine soil. J Mar Sci Eng 9(7):738

    Article  Google Scholar 

  • Tamburic S, Sisson H, Cunningham N, Stevic MJSJ (2017) Rheological and texture analysis methods for quantifying yield value and level of thixotropy. SOFW Journal 143:24–30

    Google Scholar 

  • Teng HX, Zhang JJ (2013) A new thixotropic model for waxy crude. Rheol Acta 52(10-12):903–911

    Article  CAS  Google Scholar 

  • Toorman EA (1997) Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheol Acta 36(1):56–65

    Article  CAS  Google Scholar 

  • van der Aerschot E, Mewis J (1992) Equilibrium properties of reversibly flocculated dispersions. Colloids Surf 69(1):15–22

    Article  Google Scholar 

  • Wallace JF, Rutherford CJ (2015) Geotechnical properties of Laponite RD (R). Geotech Test J 38(5):574–587

    Article  Google Scholar 

  • Wang HW, Zentar R, Wang DX (2022) Rheological characterization of fine-grained sediments under steady and dynamic conditions. Int J Geomech 22(1):04021260

    Article  Google Scholar 

  • Wei YF, Solomon MJ, Larson RG (2018) A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids. J Rheol 62(1):321–342

    Article  CAS  Google Scholar 

  • Yang WY, Yu GL (2018) Rheological response of natural soft coastal mud under oscillatory shear loadings. J Waterw Port Coast Ocean Eng 144(4):05018005

    Article  Google Scholar 

  • Zakani B, Grecov D (2020) Yield stress analysis of cellulose nanocrystalline gels. Cellulose 27(16):9337–9353

    Article  CAS  Google Scholar 

  • Zhang YP, Chen YJ, Hou YX, Jin Z, Zhou YC (2022) Fracture toughness measurements of soft sediments based on gas injection tests. Mar Georesour Geotechnol 40(7):847–855

    Article  CAS  Google Scholar 

  • Zhang YP, Hu MX, Ye T, Chen YJ, Zhou YC (2020) An experimental study on the rheological properties of Laponite RD as a transparent soil. Geotech Test J 43(3):607–621

    Article  Google Scholar 

  • Zheng BQ, Breton JR, Patel RS, Bhatia SR (2020) Microstructure, microrheology, and dynamics of laponite (R) and laponite (R)-poly(ethylene oxide) glasses and dispersions. Rheol Acta 59(6):387–397

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51579219 and No. 51878597). The views expressed in this work are those of the authors and do not necessarily reflect the position of the Nation Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Jin, Z., Que, X. et al. Thixotropic yielding behavior of MLPS colloidal suspension. Rheol Acta 62, 285–302 (2023). https://doi.org/10.1007/s00397-023-01396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-023-01396-x

Keywords

Navigation