Skip to main content

Advertisement

Log in

Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Lewy bodies are made from insoluble, phosphorylated α-synuclein, but the earliest changes that precipitate such pathology still remain conjecture. In this study, we quantify and identify relationships between the levels of the main pathologic form of phosphorylated α-synuclein over the course of Parkinson’s disease in regions affected early through to end-stage disease. Brain tissue samples from 33 cases at different disease stages and 13 controls were collected through the Australian Network of Brain Banks. 500 mg of frozen putamen (affected preclinically) and frontal cortex (affected late) was homogenized, fractionated and α-synuclein levels evaluated using specific antibodies (syn-1, BD Transduction Laboratories; S129P phospho-α-synuclein, Elan Pharmaceuticals) and quantitative western blotting. Statistical analyses assessed the relationship between the different forms of α-synuclein, compared levels between groups, and determined any changes over the disease course. Soluble S129P was detected in controls with higher levels in putamen compared with frontal cortex. In contrast, insoluble α-synuclein occurred in Parkinson’s disease with a significant increase in soluble and lipid-associated S129P, and a decrease in soluble frontal α-synuclein over the disease course. Increasing soluble S129P in the putamen correlated with increasing S129P in other fractions and regions. These data show that soluble non-phosphorylated α-synuclein decreases over the course of Parkinson’s disease, becoming increasingly phosphorylated and insoluble. The finding that S129P α-synuclein normally occurs in vulnerable brain regions, and in Parkinson’s disease has the strongest relationships to the pathogenic forms of α-synuclein in other brain regions, suggests a propagating role for putamenal phospho-α-synuclein in disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  PubMed  CAS  Google Scholar 

  2. Angot E, Brundin P (2009) Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S143–S147

    Article  PubMed  Google Scholar 

  3. Angot E, Steiner JA, Hansen C, Li JY, Brundin P (2010) Are synucleinopathies prion-like disorders? Lancet Neurol 9:1128–1138

    Article  PubMed  Google Scholar 

  4. Auluck PK, Caraveo G, Lindquist S (2010) alpha-Synuclein: Membrane Interactions and Toxicity in Parkinson’s Disease. Annu Rev Cell Dev Biol 26:211–233

    Article  PubMed  CAS  Google Scholar 

  5. Booij J, Knol RJ (2007) SPECT imaging of the dopaminergic system in (premotor) Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl 3):S425–S428

    Article  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  7. Brown DR (2010) Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life 62:334–339

    PubMed  CAS  Google Scholar 

  8. Campbell BC, McLean CA, Culvenor JG et al (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96

    Article  PubMed  CAS  Google Scholar 

  9. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314:2076–2089

    Article  PubMed  CAS  Google Scholar 

  10. Cookson MR (2009) alpha-Synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed  Google Scholar 

  11. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    Article  PubMed  CAS  Google Scholar 

  12. Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734

    Article  PubMed  CAS  Google Scholar 

  13. Duda JE, Giasson BI, Mabon ME, Lee VM, Trojanowski JQ (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs J, Nilsson C, Kachergus J et al (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922

    Article  PubMed  CAS  Google Scholar 

  15. Fujiwara H, Hasegawa M, Dohmae N et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  PubMed  CAS  Google Scholar 

  16. Grundemann J, Schlaudraff F, Haeckel O, Liss B (2008) Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res 36:e38

    Article  PubMed  Google Scholar 

  17. Harding AJ, Halliday GM (1998) Simplified neuropathological diagnosis of dementia with Lewy bodies. Neuropathol Appl Neurobiol 24:195–201

    Article  PubMed  CAS  Google Scholar 

  18. Hejjaoui M, Haj-Yahya M, Kumar KS, Brik A, Lashuel HA (2011) Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson’s disease with semisynthetic ubiquitinated alpha-synuclein. Angew Chem Int Ed Engl 50:405–409

    Article  PubMed  CAS  Google Scholar 

  19. Hong Z, Shi M, Chung KA et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    Article  PubMed  Google Scholar 

  20. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  21. Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  PubMed  CAS  Google Scholar 

  22. Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) alpha-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334

    Article  PubMed  CAS  Google Scholar 

  23. Jowaed A, Schmitt I, Kaut O, Wullner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30:6355–6359

    Article  PubMed  CAS  Google Scholar 

  24. Lee HJ, Choi C, Lee SJ (2002) Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678

    Article  PubMed  CAS  Google Scholar 

  25. Leverenz JB, Umar I, Wang Q et al (2007) Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 17:139–145

    Article  PubMed  CAS  Google Scholar 

  26. McCormack AL, Di Monte DA (2009) Enhanced alpha-synuclein expression in human neurodegenerative diseases: pathogenetic and therapeutic implications. Curr Protein Pept Sci 10:476–482

    Article  PubMed  CAS  Google Scholar 

  27. McFarland MA, Ellis CE, Markey SP, Nussbaum RL (2008) Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 7:2123–2137

    Article  PubMed  CAS  Google Scholar 

  28. Mollenhauer B, Locascio JJ, Schlz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG (2011) alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol (in press). S1474-4422(11)70014-X [pii]

  29. Nemani VM, Lu W, Berge V et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79

    Article  PubMed  CAS  Google Scholar 

  30. Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  PubMed  CAS  Google Scholar 

  31. Okochi M, Walter J, Koyama A et al (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397

    Article  PubMed  CAS  Google Scholar 

  32. Phillips GR, Huang JK, Wang Y et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32:63–77

    Article  PubMed  CAS  Google Scholar 

  33. Pielage J, Fetter RD, Davis GW (2005) Presynaptic spectrin is essential for synapse stabilization. Curr Biol 15:918–928

    Article  PubMed  CAS  Google Scholar 

  34. Saito Y, Kawashima A, Ruberu NN et al (2003) Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62:644–654

    PubMed  CAS  Google Scholar 

  35. Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120:131–143

    Article  PubMed  CAS  Google Scholar 

  36. Shtilerman MD, Ding TT, Lansbury PT Jr (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 41:3855–3860

    Article  PubMed  CAS  Google Scholar 

  37. Simunovic F, Yi M, Wang Y et al (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809

    Article  PubMed  Google Scholar 

  38. Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  39. Sulzer D (2010) Clues to how alpha-synuclein damages neurons in Parkinson’s disease. Mov Disord 25(Suppl 1):S27–S31

    Article  PubMed  Google Scholar 

  40. Tanji K, Mori F, Mimura J et al (2010) Proteinase K-resistant alpha-synuclein is deposited in presynapses in human Lewy body disease and A53T alpha-synuclein transgenic mice. Acta Neuropathol 120:145–154

    Article  PubMed  CAS  Google Scholar 

  41. Tong J, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188

    Article  PubMed  Google Scholar 

  42. van Rooijen BD, Claessens MM, Subramaniam V (2010) Membrane interactions of oligomeric alpha-synuclein: potential role in Parkinson’s disease. Curr Protein Pept Sci 11:334–342

    Article  PubMed  Google Scholar 

  43. Waragai M, Sekiyama K, Sekigawa A, Takamatsu Y, Fujita M, Hashimoto M (2010) alpha-Synuclein and DJ-1 as potential biological fluid biomarkers for Parkinson’s disease. Int J Mol Sci 11:4257–4266

    Article  PubMed  CAS  Google Scholar 

  44. Williams MM, Xiong C, Morris JC, Galvin JE (2006) Survival and mortality differences between dementia with Lewy bodies vs Alzheimer disease. Neurology 67:1935–1941

    Article  PubMed  Google Scholar 

  45. Wills J, Jones J, Haggerty T et al (2010) Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 225:210–218

    Article  PubMed  CAS  Google Scholar 

  46. Xu J, Kao SY, Lee FJ et al (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Human brain tissue samples were received from the Australian Brain Bank Network which is supported by the National Health and Medical Research Council of Australia (NHMRC), specifically from the Sydney Brain Bank (also supported by Neuroscience Research Australia and the University of New South Wales), from the NSW Tissue Resource Centre [also supported by the Schizophrenia Research Institute, the National Institute of Alcohol Abuse and Alcoholism (NIH (NIAAA) R24AA012725, and the University of Sydney], from the South Australian Brain Bank (also supported by the Flinders Medical Centre Foundation), from the Victorian Brain Bank Network (also supported by Neurosciences Australia, the University of Melbourne, the Mental Health Research Institute of Victoria, the Alfred Hospital, and the Victorian Forensic Institute of Medicine), from the Queensland Brain Bank and from the Western Australia Brain Bank Network. This work was also supported by the NHMRC (510186) and the National Basic Research Program of China (2006CB500700), NSFC fund (30771062). Gai has a NHMRC Senior Research Fellowship 535014. Halliday has a NHMRC Senior Principal Research Fellowship 630434. We would like to thank Heather McCann for laboratory assistance and Heidi Cartwright for the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda M. Halliday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Broe, M., Huang, Y. et al. Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease. Acta Neuropathol 121, 695–704 (2011). https://doi.org/10.1007/s00401-011-0815-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0815-1

Keywords

Navigation