Skip to main content

Advertisement

Log in

Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Sporadic Alzheimer’s disease (AD) is characterised by the deposition and accumulation of specific protein aggregates. Failure of clearance could underlie this process, and recent genetic association studies point towards involvement of the phagocytosis and autophagy pathways. We developed a real-time tri-color flow cytometry method to quantitate the phagocytic function of human peripheral blood monocyte subsets including non-classic CD14dimCD16+, intermediate CD14+CD16+ and classic CD14+CD16 monocytes. Using this method, we have measured the phagocytic ability of fresh monocytes in a study of preclinical, prodromal and clinical AD, matched with cognitively normal healthy control subjects. Basal levels of phagocytosis in all three subsets of monocytes were similar between healthy controls and AD patients, while a significant increase of basal phagocytosis was found in subjects with high Aβ-amyloid burden as assessed by PET scans. Pre-treating cells with Copaxone (CPX, to stimulate phagocytosis) or ATP (an inhibitor of P2X7-mediated phagocytosis) showed a differential response depending on clinical or Aβ-burden status, indicating a relative functional deficit. Overall the results are consistent with a perturbation of basal and stimulated innate phagocytosis in sporadic AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CPX:

Copaxone (also known as glatiramer acetate)

AD:

Alzheimer’s disease

HC:

Healthy controls

MCI:

Mild cognitive impairment

SUVR:

Standardized uptake value ratio

NMMHC-IIA:

Nonmuscle myosin heavy chain IIA

FITC:

Fluorescein isothiocyanate

APC:

Allophycocyanin

mAb:

Monoclonal antibodies

YG:

Yellow–green

YO:

Yellow–orange

CytD:

Cytochalasin D

PBS:

Phosphate buffered saline

PBMCs:

Peripheral blood mononuclear cells

References

  1. Boche D, Zotova E, Weller RO et al (2008) Consequence of Aβ immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310. doi:10.1093/brain/awn261

    Article  CAS  PubMed  Google Scholar 

  2. Caragnano M, Tortorella P, Bergami A et al (2012) Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. J Neuroimmunol 245:93–97. doi:10.1016/j.jneuroim.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Chan G, White CC, Winn PA et al (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18:1556–1558. doi:10.1038/nn.4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Hu J, Jiang L et al (2014) Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 279:94–101. doi:10.1016/j.neuroscience.2014.08.036

    Article  CAS  PubMed  Google Scholar 

  5. Clark CM, Pontecorvo MJ, Beach TG et al (2012) Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 11:669–678

    Article  CAS  PubMed  Google Scholar 

  6. Clark CM, Schneider JA, Bedell BJ et al (2011) Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 305:275–283. doi:10.1001/jama.2010.2008

    Article  CAS  PubMed  Google Scholar 

  7. Crehan H, Hardy J, Pocock J (2013) Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis 54:139–149. doi:10.1016/j.nbd.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Cros J, Cagnard N, Woollard K et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386. doi:10.1016/j.immuni.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Durafourt BA, Moore CS, Zammit DA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727. doi:10.1002/glia.22298

    Article  PubMed  Google Scholar 

  10. Ellis KA, Bush AI, Darby D et al (2009) The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr 21:672–687. doi:10.1017/S1041610209009405

    Article  PubMed  Google Scholar 

  11. Fassbender K, Walter S, Kuhl S et al (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18:203–205. doi:10.1096/fj.03-0364fje

    CAS  PubMed  Google Scholar 

  12. Fiala M, Halder RC, Sagong B et al (2015) omega-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. FASEB J 29:2681–2689. doi:10.1096/fj.14-264218

    Article  CAS  PubMed  Google Scholar 

  13. Fiala M, Lin J, Ringman J et al (2005) Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer’s disease patients. J Alzh Dis 7:221–232

    CAS  Google Scholar 

  14. Frenkel D, Maron R, Burt DS, Weiner HL (2005) Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J Clin Invest 115:2423–2433. doi:10.1172/JCI23241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu BJ, Baird PN, Vessey KA et al (2013) A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. FASEB J 27:1479–1487. doi:10.1096/fj.12-215368

    Article  CAS  PubMed  Google Scholar 

  16. Gu BJ, Duce JA, Valova VA et al (2012) P2X7 Receptor-mediated scavenger activity of mononuclear phagocytes toward non-opsonized particles and apoptotic cells is inhibited by serum glycoproteins but remains active in cerebrospinal fluid. J Biol Chem 287:17318–17330. doi:10.1074/jbc.M112.340885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS (2009) Extracellular ATP dissociates nonmuscle myosin from P2X7 complex: this dissociation regulates P2X7 pore formation. Am J Physiol Cell Physiol 297:C430–C439. doi:10.1152/ajpcell.00079.2009

    Article  CAS  PubMed  Google Scholar 

  18. Gu BJ, Saunders BM, Jursik C, Wiley JS (2010) The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of non-opsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 115:1621–1631. doi:10.1182/blood-2009-07-232587

    Article  CAS  PubMed  Google Scholar 

  19. Gu BJ, Saunders BM, Petrou S, Wiley JS (2011) P2X7 is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP. J Immunol 187:2365–2375. doi:10.4049/jimmunol.1101178

    Article  CAS  PubMed  Google Scholar 

  20. Gu BJ, Sun C, Fuller S, Skarratt KK, Petrou S, Wiley JS (2014) A quantitative method for measuring innate phagocytosis by human monocytes using real-time flow cytometry. Cytometry A 85:313–321. doi:10.1002/cyto.a.22400

    Article  PubMed  Google Scholar 

  21. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. doi:10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  22. Hamilton JA, Whitty G, White AR et al (2002) Alzheimer’s disease amyloid β and prion protein amyloidogenic peptides promote macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 (M-CSF). Brain Res 940:49–54

    Article  CAS  PubMed  Google Scholar 

  23. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet 14:388–405. doi:10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  24. Hong S, Beja-Glasser VF, Nfonoyim BM et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. doi:10.1126/science.aad8373

    Article  CAS  PubMed  Google Scholar 

  25. Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukoc Biol 64:265–273

    CAS  PubMed  Google Scholar 

  26. Ida N, Hartmann T, Pantel J et al (1996) Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271:22908–22914

    Article  CAS  PubMed  Google Scholar 

  27. Kim WS, Hongyun L, Ruberu K et al (2013) Deletion of ABCA7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 33:4387–4394. doi:10.1523/JNEUROSCI.4165-12.2013

    Article  CAS  PubMed  Google Scholar 

  28. Koronyo Y, Salumbides BC, Sheyn J et al (2015) Therapeutic effects of glatiramer acetate and grafted CD115(+) monocytes in a mouse model of Alzheimer’s disease. Brain 138:2399–2422. doi:10.1093/brain/awv150

    Article  PubMed  PubMed Central  Google Scholar 

  29. Landa G, Butovsky O, Shoshani J, Schwartz M, Pollack A (2008) Weekly vaccination with Copaxone (glatiramer acetate) as a potential therapy for dry age-related macular degeneration. Curr Eye Res 33:1011–1013. doi:10.1080/02713680802484637

    Article  CAS  PubMed  Google Scholar 

  30. Lovelace MD, Gu BJ, Eamegdool SS et al (2015) P2X7 receptors mediate innate phagocytosis by human neural precursor cells and neuroblasts. Stem Cells 33:526–541. doi:10.1002/stem.1864

    Article  CAS  PubMed  Google Scholar 

  31. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Prim 1:15056. doi:10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  32. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  33. Michaud JP, Bellavance MA, Prefontaine P, Rivest S (2013) Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid-β. Cell Rep 5:646–653. doi:10.1016/j.celrep.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  34. Ni J, Wang P, Zhang J, Chen W, Gu L (2013) Silencing of the P2X7 receptor enhances amyloid-β phagocytosis by microglia. Biochem Biophys Res Commun 434:363–369. doi:10.1016/j.bbrc.2013.03.079

    Article  CAS  PubMed  Google Scholar 

  35. Ostrowitzki S, Deptula D, Thurfjell L et al (2012) Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 69:198–207. doi:10.1001/archneurol.2011.1538

    Article  PubMed  Google Scholar 

  36. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317. doi:10.1074/jbc.M209478200

    Article  CAS  PubMed  Google Scholar 

  37. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  38. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi:10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  39. Pul R, Moharregh-Khiabani D, Skuljec J et al (2011) Glatiramer acetate modulates TNF- and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388. doi:10.1007/s11481-010-9248-1

    Article  PubMed  Google Scholar 

  40. Pul R, Morbiducci F, Skuljec J et al (2012) Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS One 7:e51867. doi:10.1371/journal.pone.0051867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. doi:10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  42. Rembach A, Faux NG, Watt AD et al (2014) Changes in plasma amyloid β in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement 10:53–61. doi:10.1016/j.jalz.2012.12.006

    Article  PubMed  Google Scholar 

  43. Rowe CC, Bourgeat P, Ellis KA et al (2013) Predicting Alzheimer disease with β-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing. Ann Neurol 74:905–913. doi:10.1002/ana.24040

    Article  CAS  PubMed  Google Scholar 

  44. Rowe CC, Ellis KA, Rimajova M et al (2010) Amyloid imaging results from the Australian imaging, biomarkers and lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283. doi:10.1016/j.neurobiolaging.2010.04.007

    Article  PubMed  Google Scholar 

  45. Sanz JM, Chiozzi P, Ferrari D et al (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182:4378–4385. doi:10.4049/jimmunol.0803612

    Article  CAS  PubMed  Google Scholar 

  46. Siemers ER, Sundell KL, Carlson C et al (2016) Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement 12:110–120. doi:10.1016/j.jalz.2015.06.1893

    Article  Google Scholar 

  47. van de Veerdonk FL, Netea MG (2010) Diversity: a hallmark of monocyte society. Immunity 33:289–291. doi:10.1016/j.immuni.2010.09.007

    Article  PubMed  Google Scholar 

  48. Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68:319–329. doi:10.1002/ana.22068

    Article  PubMed  Google Scholar 

  49. Vasquez JB, Fardo DW, Estus S (2013) ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci Lett 556:58–62. doi:10.1016/j.neulet.2013.09.058

    Article  CAS  PubMed  Google Scholar 

  50. Villemagne VL, Burnham S, Bourgeat P et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367. doi:10.1016/S1474-4422(13)70044-9

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1–11. doi:10.1016/j.cell.2015.01.049

    Article  Google Scholar 

  52. Winblad B, Palmer K, Kivipelto M et al (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on mild cognitive impairment. J Intern Med 256:240–246. doi:10.1111/j.1365-2796.2004.01380.x

    Article  CAS  PubMed  Google Scholar 

  53. Wong DF, Rosenberg PB, Zhou Y et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (Florbetapir F 18). J Nucl Med 51:913–920. doi:10.2967/jnumed.109.069088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu Y, Singh S, Georgescu MM, Birge RB (2005) A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553. doi:10.1242/jcs.01632

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto M, Kamatsuka Y, Ohishi A, Nishida K, Nagasawa K (2013) P2X7 receptors regulate engulfing activity of non-stimulated resting astrocytes. Biochem Biophys Res Commun 439:90–95. doi:10.1016/j.bbrc.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  56. Ziegler-Heitbrock L, Ancuta P, Crowe S et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80. doi:10.1182/blood-2010-02-258558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Verena Wimmer for the help of confocal microscopy. A full list of AIBL investigators can be found at http://aibl.csiro.au/about/aibl-research-team. This work was supported by ARC Future Fellowship (BG, FT120100581) and NHMRC Project Grant (1048082, 1061419), Macular Disease Foundation Australia Project Grant (2014-–2016), Macular Society Grant USA (2015) and the Victorian Government’s Operational Infrastructure Support Grant to the Florey Institute.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ben J. Gu.

Ethics declarations

Conflict of interest

The authors have declared that no conflicts of interest exist.

Additional information

Deceased: Alan Rembach, 20 November 2014.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, B.J., Huang, X., Ou, A. et al. Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease. Acta Neuropathol 132, 377–389 (2016). https://doi.org/10.1007/s00401-016-1596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1596-3

Keywords

Navigation