Skip to main content

Advertisement

Log in

Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

X-linked myotubular myopathy (XLMTM), a severe congenital myopathy, is caused by mutations in the MTM1 gene located on the X chromosome. A majority of affected males die in the early postnatal period, whereas female carriers are believed to be usually asymptomatic. Nevertheless, several affected females have been reported. To assess the phenotypic and pathological spectra of carrier females and to delineate diagnostic clues, we characterized 17 new unrelated affected females and performed a detailed comparison with previously reported cases at the clinical, muscle imaging, histological, ultrastructural and molecular levels. Taken together, the analysis of this large cohort of 43 cases highlights a wide spectrum of clinical severity ranging from severe neonatal and generalized weakness, similar to XLMTM male, to milder adult forms. Several females show a decline in respiratory function. Asymmetric weakness is a noteworthy frequent specific feature potentially correlated to an increased prevalence of highly skewed X inactivation. Asymmetry of growth was also noted. Other diagnostic clues include facial weakness, ptosis and ophthalmoplegia, skeletal and joint abnormalities, and histopathological signs that are hallmarks of centronuclear myopathy such as centralized nuclei and necklace fibers. The histopathological findings also demonstrate a general disorganization of muscle structure in addition to these specific hallmarks. Thus, MTM1 mutations in carrier females define a specific myopathy, which may be independent of the presence of an XLMTM male in the family. As several of the reported affected females carry large heterozygous MTM1 deletions not detectable by Sanger sequencing, and as milder phenotypes present as adult-onset limb-girdle myopathy, the prevalence of this myopathy is likely to be greatly underestimated. This report should aid diagnosis and thus the clinical management and genetic counseling of MTM1 carrier females. Furthermore, the clinical and pathological history of this cohort may be useful for therapeutic projects in males with XLMTM, as it illustrates the spectrum of possible evolution of the disease in patients surviving long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abath Neto O, Silva MR, Martins CA, Oliveira AS, Reed UC, Biancalana V, Pesquero JB, Laporte J, Zanoteli E (2016) A study of a cohort of X-linked myotubular myopathy at the clinical, histologic, and genetic levels. Pediatr Neurol 58:107–112

    Article  PubMed  Google Scholar 

  2. Agrawal PB, Pierson CR, Joshi M, Liu X, Ravenscroft G, Moghadaszadeh B, Talabere T, Viola M, Swanson LC, Haliloglu G et al (2014) SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy. Am J Hum Genet 95:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Amburgey K, Lawlor MW, Del Gaudio D, Cheng YW, Fitzpatrick C, Minor A, Li X, Aughton D, Das S, Beggs AH et al (2013) Large duplication in MTM1 associated with myotubular myopathy. Neuromuscul Disord 23:214–218

    Article  CAS  PubMed  Google Scholar 

  5. Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, Willard HF (2006) X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet 79:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartsch O, Kress W, Wagner A, Seemanova E (1999) The novel contiguous gene syndrome of myotubular myopathy (MTM1), male hypogenitalism and deletion in Xq28: report of the first familial case. Cytogenet Cell Genet 85:310–314

    Article  CAS  PubMed  Google Scholar 

  7. Bevilacqua JA, Bitoun M, Biancalana V, Oldfors A, Stoltenburg G, Claeys KG, Lacene E, Brochier G, Manere L, Laforet P et al (2009) “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol 117:283–291

    Article  PubMed  Google Scholar 

  8. Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, Lubieniecki F, Taratuto AL, Laquerriere A, Claeys KG et al (2011) Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 37:271–284

    Article  CAS  PubMed  Google Scholar 

  9. Biancalana V, Beggs AH, Das S, Jungbluth H, Kress W, Nishino I, North K, Romero NB, Laporte J (2012) Clinical utility gene card for: centronuclear and myotubular myopathies. Eur J Hum Genet. doi:10.1038/ejhg.2012.91

    Google Scholar 

  10. Biancalana V, Caron O, Gallati S, Baas F, Kress W, Novelli G, D’Apice MR, Lagier-Tourenne C, Buj-Bello A, Romero NB et al (2003) Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 112:135–142

    PubMed  Google Scholar 

  11. Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH et al (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209

    Article  CAS  PubMed  Google Scholar 

  12. Bohm J, Biancalana V, Malfatti E, Dondaine N, Koch C, Vasli N, Kress W, Strittmatter M, Taratuto AL, Gonorazky H et al (2014) Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain 137(12):3160–3170

    Article  PubMed  Google Scholar 

  13. Carrel L, Willard HF (1996) An assay for X inactivation based on differential methylation at the fragile X locus, FMR1. Am J Med Genet 64:27–30

    Article  CAS  PubMed  Google Scholar 

  14. Casar-Borota O, Jacobsson J, Libelius R, Oldfors CH, Malfatti E, Romero NB, Oldfors A (2015) A novel dynamin-2 gene mutation associated with a late-onset centronuclear myopathy with necklace fibres. Neuromuscul Disord 25:345–348

    Article  PubMed  Google Scholar 

  15. Ceyhan-Birsoy O, Agrawal PB, Hidalgo C, Schmitz-Abe K, DeChene ET, Swanson LC, Soemedi R, Vasli N, Iannaccone ST, Shieh PB et al (2013) Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 81:1205–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, Lawlor MW, Rider BE, Jamet T, Daniele N et al (2014) Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med. doi:10.1126/scitranslmed.3007523

    PubMed  PubMed Central  Google Scholar 

  17. Cowling BS, Chevremont T, Prokic I, Kretz C, Ferry A, Coirault C, Koutsopoulos O, Laugel V, Romero NB, Laporte J (2014) Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest 124:1350–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dahl N, Hu LJ, Chery M, Fardeau M, Gilgenkrantz S, Nivelon-Chevallier A, Sidaner-Noisette I, Mugneret F, Gouyon JB, Gal A et al (1995) Myotubular myopathy in a girl with a deletion at Xq27–q28 and unbalanced X inactivation assigns the MTM1 gene to a 600-kb region. Am J Hum Genet 56:1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  19. de Gouyon BM, Zhao W, Laporte J, Mandel JL, Metzenberg A, Herman GE (1997) Characterization of mutations in the myotubularin gene in twenty six patients with X-linked myotubular myopathy. Hum Mol Genet 6:1499–1504

    Article  PubMed  Google Scholar 

  20. Drouet A, Ollagnon-Roman E, Streichenberger N, Biancalana V, Cossee M, Guilloton L, Petiot P (2008) Unilateral presentation of X-linked myotubular myopathy (XLMTM) in two out of three female carriers in a family with no affected male. Rev Neurol (Paris) 164:169–176

    Article  CAS  Google Scholar 

  21. Dubowitz V, Sewry CA, Oldfors A (2013) Muscle biopsy: a practical approach, 4th edn. Saunders Elsevier, London

    Google Scholar 

  22. Fattori F, Maggi L, Bruno C, Cassandrini D, Codemo V, Catteruccia M, Tasca G, Berardinelli A, Magri F, Pane M et al (2015) Centronuclear myopathies: genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J Neurol 262:1728–1740

    Article  PubMed  Google Scholar 

  23. Flex E, De Luca A, D’Apice MR, Buccino A, Dallapiccola B, Novelli G (2002) Rapid scanning of myotubularin (MTM1) gene by denaturing high-performance liquid chromatography (DHPLC). Neuromuscul Disord 12:501–505

    Article  PubMed  Google Scholar 

  24. Fukami M, Wada Y, Miyabayashi K, Nishino I, Hasegawa T, Nordenskjold A, Camerino G, Kretz C, Buj-Bello A, Laporte J et al (2006) CXorf6 is a causative gene for hypospadias. Nat Genet 38:1369–1371

    Article  CAS  PubMed  Google Scholar 

  25. Grogan PM, Tanner SM, Orstavik KH, Knudsen GP, Saperstein DS, Vogel H, Barohn RJ, Herbelin LL, McVey AL, Katz JS (2005) Myopathy with skeletal asymmetry and hemidiaphragm elevation is caused by myotubularin mutations. Neurology 64:1638–1640

    Article  CAS  PubMed  Google Scholar 

  26. Gurgel-Giannetti J, Zanoteli E, de Castro Concentino EL, Abath Neto O, Pesquero JB, Reed UC, Vainzof M (2012) Necklace fibers as histopathological marker in a patient with severe form of X-linked myotubular myopathy. Neuromuscul Disord 22:541–545

    Article  PubMed  Google Scholar 

  27. Hagiwara SI, Kubota M, Sakaguchi K, Hiwatari E, Kishimoto H, Kagimoto S (2013) Fatal hepatic hemorrhage from peliosis hepatis with X-linked myotubular myopathy: a case report. J Pediatr Gastroenterol Nutr 60(5):e45–e46

    Article  Google Scholar 

  28. Hammans SR, Robinson DO, Moutou C, Kennedy CR, Dennis NR, Hughes PJ, Ellison DW (2000) A clinical and genetic study of a manifesting heterozygote with X-linked myotubular myopathy. Neuromuscul Disord 10:133–137

    Article  CAS  PubMed  Google Scholar 

  29. Hedberg C, Lindberg C, Mathe G, Moslemi AR, Oldfors A (2011) Myopathy in a woman and her daughter associated with a novel splice site MTM1 mutation. Neuromuscul Disord 22:244–251

    Article  PubMed  Google Scholar 

  30. Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A (1999) Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr 134:206–214

    Article  CAS  PubMed  Google Scholar 

  31. Herman GE, Kopacz K, Zhao W, Mills PL, Metzenberg A, Das S (2002) Characterization of mutations in fifty North American patients with X-linked myotubular myopathy. Hum Mutat 19:114–121

    Article  CAS  PubMed  Google Scholar 

  32. Hu LJ, Laporte J, Kress W, Kioschis P, Siebenhaar R, Poustka A, Fardeau M, Metzenberg A, Janssen EA, Thomas N et al (1996) Deletions in Xq28 in two boys with myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430 kb region. Hum Mol Genet 5:139–143

    Article  CAS  PubMed  Google Scholar 

  33. Jungbluth H, Sewry CA, Buj-Bello A, Kristiansen M, Orstavik KH, Kelsey A, Manzur AY, Mercuri E, Wallgren-Pettersson C, Muntoni F (2003) Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul Disord 13:55–59

    Article  CAS  PubMed  Google Scholar 

  34. Kristiansen M, Knudsen GP, Tanner SM, McEntagart M, Jungbluth H, Muntoni F, Sewry C, Gallati S, Orstavik KH, Wallgren-Pettersson C (2003) X-inactivation patterns in carriers of X-linked myotubular myopathy. Neuromuscul Disord 13:468–471

    Article  CAS  PubMed  Google Scholar 

  35. Kutchukian C, Lo Scrudato M, Tourneur Y, Poulard K, Vignaud A, Berthier C, Allard B, Lawlor MW, Buj-Bello A, Jacquemond V (2016) Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice. Proc Natl Acad Sci USA 113:14432–14437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Wallgren-Pettersson C, Herger F, Buj-Bello A, Blondeau F, Liechti-Gallati S et al (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393–409

    Article  CAS  PubMed  Google Scholar 

  37. Laporte J, Guiraud-Chaumeil C, Vincent MC, Mandel JL, Tanner SM, Liechti-Gallati S, Wallgren-Pettersson C, Dahl N, Kress W, Bolhuis PA et al (1997) Mutations in the MTM1 gene implicated in X-linked myotubular myopathy. ENMC International Consortium on Myotubular Myopathy. European Neuro-Muscular Center. Hum Mol Genet 6:1505–1511

    Article  CAS  PubMed  Google Scholar 

  38. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  CAS  PubMed  Google Scholar 

  39. Laporte J, Kress W, Mandel JL (2001) Diagnosis of X-linked myotubular myopathy by detection of myotubularin. Ann Neurol 50:42–46

    Article  CAS  PubMed  Google Scholar 

  40. Lawlor MW, Armstrong D, Viola MG, Widrick JJ, Meng H, Grange RW, Childers MK, Hsu CP, O’Callaghan M, Pierson CR et al (2013) Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 22:1525–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liewluck T, Lovell TL, Bite AV, Engel AG (2010) Sporadic centronuclear myopathy with muscle pseudohypertrophy, neutropenia, and necklace fibers due to a DNM2 mutation. Neuromuscul Disord 20:801–804

    Article  PubMed  PubMed Central  Google Scholar 

  42. McEntagart M, Parsons G, Buj-Bello A, Biancalana V, Fenton I, Little M, Krawczak M, Thomas N, Herman G, Clarke A et al (2002) Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord 12:939–946

    Article  PubMed  Google Scholar 

  43. Motoki T, Fukuda M, Nakano T, Matsukage S, Fukui A, Akiyoshi S, Hayashi YK, Ishii E, Nishino I (2013) Fatal hepatic hemorrhage by peliosis hepatis in X-linked myotubular myopathy: a case report. Neuromuscul Disord 23(11):917–921

    Article  CAS  PubMed  Google Scholar 

  44. Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A et al (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139

    Article  CAS  PubMed  Google Scholar 

  45. Oliveira J, Oliveira ME, Kress W, Taipa R, Pires MM, Hilbert P, Baxter P, Santos M, Buermans H, den Dunnen JT et al (2012) Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database. Eur J Hum Genet 21:540–549

    Article  PubMed  PubMed Central  Google Scholar 

  46. Penisson-Besnier I, Biancalana V, Reynier P, Cossee M, Dubas F (2007) Diagnosis of myotubular myopathy in the oldest known manifesting female carrier: a clinical and genetic study. Neuromuscul Disord 17:180–185

    Article  PubMed  Google Scholar 

  47. Quijano-Roy S, Carlier RY, Fischer D (2011) Muscle imaging in congenital myopathies. Semin Pediatr Neurol 18:221–229

    Article  PubMed  Google Scholar 

  48. Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul 20:223–228

    Article  Google Scholar 

  49. Sabha N, Volpatti JR, Gonorazky H, Reifler A, Davidson AE, Li X, Eltayeb NM, Dall’Armi C, Di Paolo G, Brooks SV et al (2016) PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 126:3613–3625

    Article  PubMed  PubMed Central  Google Scholar 

  50. Savarese M, Musumeci O, Giugliano T, Rubegni A, Fiorillo C, Fattori F, Torella A, Battini R, Rodolico C, Pugliese A et al (2016) Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscul Disord 26:292–299

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schara U, Kress W, Tucke J, Mortier W (2003) X-linked myotubular myopathy in a female infant caused by a new MTM1 gene mutation. Neurology 60:1363–1365

    Article  PubMed  Google Scholar 

  52. Shichiji M, Biancalana V, Fardeau M, Hogrel JY, Osawa M, Laporte J, Romero NB (2013) Extensive morphological and immunohistochemical characterization in myotubular myopathy. Brain Behav 3:476–486

    Article  PubMed  PubMed Central  Google Scholar 

  53. Smith BK, Renno MS, Green MM, Sexton TM, Lawson LA, Martin AD, Corti M, Byrne BJ (2016) Respiratory motor function in individuals with centronuclear myopathies. Muscle Nerve 53:214–221

    Article  PubMed  Google Scholar 

  54. Soltanzadeh P, Friez MJ, Dunn D, von Niederhausern A, Gurvich OL, Swoboda KJ, Sampson JB, Pestronk A, Connolly AM, Florence JM et al (2010) Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscul Disord 20:499–504

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sutton IJ, Winer JB, Norman AN, Liechti-Gallati S, MacDonald F (2001) Limb girdle and facial weakness in female carriers of X-linked myotubular myopathy mutations. Neurology 57:900–902

    Article  CAS  PubMed  Google Scholar 

  56. Tanner SM, Orstavik KH, Kristiansen M, Lev D, Lerman-Sagie T, Sadeh M, Liechti-Gallati S (1999) Skewed X-inactivation in a manifesting carrier of X-linked myotubular myopathy and in her non-manifesting carrier mother. Hum Genet 104:249–253

    Article  CAS  PubMed  Google Scholar 

  57. Tanner SM, Schneider V, Thomas NS, Clarke A, Lazarou L, Liechti-Gallati S (1999) Characterization of 34 novel and six known MTM1 gene mutations in 47 unrelated X-linked myotubular myopathy patients. Neuromuscul Disord 9:41–49

    Article  CAS  PubMed  Google Scholar 

  58. Tasca G, Monforte M, Iannaccone E, Laschena F, Ottaviani P, Silvestri G, Masciullo M, Mirabella M, Servidei S, Ricci E (2012) Muscle MRI in female carriers of dystrophinopathy. Eur J Neurol 19:1256–1260

    Article  CAS  PubMed  Google Scholar 

  59. Terlizzi JP, Azizi R, Chow MD, Underberg-Davis S, Nosher JL, Stafford PW, Pierre J (2013) Peliosis hepatis in a child with myotubular myopathy: successful treatment using hepatic artery embolization. J Pediatr Surg 48:e9–e12

    Article  PubMed  Google Scholar 

  60. Tosch V, Vasli N, Kretz C, Nicot AS, Gasnier C, Dondaine N, Oriot D, Barth M, Puissant H, Romero NB et al (2010) Novel molecular diagnostic approaches for X-linked centronuclear (myotubular) myopathy reveal intronic mutations. Neuromuscul Disord 20:375–381

    Article  PubMed  Google Scholar 

  61. Trump N, Cullup T, Verheij JB, Manzur A, Muntoni F, Abbs S, Jungbluth H (2012) X-linked myotubular myopathy due to a complex rearrangement involving a duplication of MTM1 exon 10. Neuromuscul 22:384–388

    Article  CAS  Google Scholar 

  62. Tsai TC, Horinouchi H, Noguchi S, Minami N, Murayama K, Hayashi YK, Nonaka I, Nishino I (2005) Characterization of MTM1 mutations in 31 Japanese families with myotubular myopathy, including a patient carrying 240 kb deletion in Xq28 without male hypogenitalism. Neuromuscul Disord 15:245–252

    Article  PubMed  Google Scholar 

  63. Viggiano E, Ergoli M, Picillo E, Politano L (2016) Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy. Hum Genet 135:685–698

    Article  CAS  PubMed  Google Scholar 

  64. Vincent MC, Guiraud-Chaumeil C, Laporte J, Manouvrier-Hanu S, Mandel JL (1998) Extensive germinal mosaicism in a family with X linked myotubular myopathy simulates genetic heterogeneity. J Med Genet 35:241–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilmshurst JM, Lillis S, Zhou H, Pillay K, Henderson H, Kress W, Muller CR, Ndondo A, Cloke V, Cullup T et al (2010) RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 68:717–726

    Article  CAS  PubMed  Google Scholar 

  66. Wu H, Luo J, Yu H, Rattner A, Mo A, Wang Y, Smallwood PM, Erlanger B, Wheelan SJ, Nathans J (2014) Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81:103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families. Because facial features are part of the clinical picture, patients have kindly consented to the use of their clinical photographs without masking their faces. MRI images of patients F13 and F16 were kindly provided, respectively, by Dr Milja Holstila, Finland, and Dr Florence Caillon, France, and muscle biopsy from patient F3 was managed by Cardiobiotec Biobanck, Lyon, France. We thank Claire FEGER and Nadine KEMPF for technical assistance. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, the France Génomique National infrastructure, funded as part of the Investissements d’Avenir program managed by the Agence Nationale pour la Recherche (ANR-10-INBS-09), and Fondation Maladies Rares within the frame of the “Myocapture” sequencing project, ANR-10-LABX-0030-INRT under the frame program Investissements d’Avenir ANR-10-IDEX-0002-02, Fondation pour la Recherche Médicale (DBI20131228569) and AFM (AFM-16992) and CREGEMES for the MYOdiagHTS Project.

Author information

Authors and Affiliations

Authors

Contributions

VB and JL directed the study; VB, SS and MM performed the study; VB analyzed the data; all the others authors contributed materials; VB and JL wrote the manuscript.

Corresponding author

Correspondence to Valérie Biancalana.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from patients F4, F5, F16 and F17 for whom identifying photographic information is included in this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancalana, V., Scheidecker, S., Miguet, M. et al. Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol 134, 889–904 (2017). https://doi.org/10.1007/s00401-017-1748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1748-0

Keywords

Navigation