Skip to main content
Log in

Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively—laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agamanolis DP, Katsetos CD, Klonk CJ, Bartkowski HM, Ganapathy S, Staugaitis SM, Kuerbitz SJ, Patton DF, Talaizadeh A, Cohen BH (2012) An unusual form of superficially disseminated glioma in children: report of 3 cases. J Child Neurol 27:727–733. https://doi.org/10.1177/0883073811426500

    Article  PubMed  Google Scholar 

  2. Amatu A, Sartore-Bianchi A, Siena S (2016) NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1:e000023. https://doi.org/10.1136/esmoopen-2015-000023

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armao DM, Stone J, Castillo M, Mitchell KM, Bouldin TW, Suzuki K (2000) Diffuse leptomeningeal oligodendrogliomatosis: radiologic/pathologic correlation. AJNR Am J Neuroradiol 21:1122–1126

    PubMed  CAS  Google Scholar 

  4. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. https://doi.org/10.1093/bioinformatics/btu049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bonner T, O’Brien SJ, Nash WG, Rapp UR, Morton CC, Leder P (1984) The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223:71–74

    Article  PubMed  CAS  Google Scholar 

  6. Bourne TD, Mandell JW, Matsumoto JA, Jane JA Jr, Lopes MB (2006) Primary disseminated leptomeningeal oligodendroglioma with 1p deletion. Case report. J Neurosurg 105:465–469. https://doi.org/10.3171/ped.2006.105.6.465

    Article  PubMed  Google Scholar 

  7. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Chen R, Macdonald DR, Ramsay DA (1995) Primary diffuse leptomeningeal oligodendroglioma. Case report. J Neurosurg 83:724–728. https://doi.org/10.3171/jns.1995.83.4.0724

    Article  PubMed  CAS  Google Scholar 

  9. Chiang JCH, Harreld JH, Orr BA, Sharma S, Ismail A, Segura AD, Ellison DW (2017) Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination. Acta Neuropathol 134:159–162. https://doi.org/10.1007/s00401-017-1728-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cho HJ, Myung JK, Kim H, Park CK, Kim SK, Chung CK, Choi SH, Park SH (2015) Primary diffuse leptomeningeal glioneuronal tumors. Brain Tumor Pathol 32:49–55. https://doi.org/10.1007/s10014-014-0187-z

    Article  PubMed  Google Scholar 

  11. Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, Jacob K, Benner A, Witt H, Remke M et al (2011) Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 121:763–774. https://doi.org/10.1007/s00401-011-0817-z

    Article  PubMed  CAS  Google Scholar 

  12. Dodgshun AJ, SantaCruz N, Hwang J, Ramkissoon SH, Malkin H, Bergthold G, Manley P, Chi S, MacGregor D, Goumnerova L et al (2016) Disseminated glioneuronal tumors occurring in childhood: treatment outcomes and BRAF alterations including V600E mutation. J Neurooncol 128:293–302. https://doi.org/10.1007/s11060-016-2109-x

    Article  PubMed  CAS  Google Scholar 

  13. Dyson K, Rivera-Zengotita M, Kresak J, Weaver K, Stover B, Fort J, Rahman M, Pincus DW, Sayour EJ (2016) FGFR1 N546K and H3F3A K27M mutations in a diffuse leptomeningeal tumour with glial and neuronal markers. Histopathology 69:704–707. https://doi.org/10.1111/his.12983

    Article  PubMed  Google Scholar 

  14. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW, Jones TA, Aarum J, Dalton J, Bailey S et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181. https://doi.org/10.1002/path.2558

    Article  PubMed  CAS  Google Scholar 

  15. Gardiman MP, Fassan M, Orvieto E, D’Avella D, Denaro L, Calderone M, Severino M, Scarsello G, Viscardi E, Perilongo G (2010) Diffuse leptomeningeal glioneuronal tumors: a new entity? Brain Pathol 20:361–366. https://doi.org/10.1111/j.1750-3639.2009.00285.x

    Article  PubMed  Google Scholar 

  16. Gilmer-Hill HS, Ellis WG, Imbesi SG, Boggan JE (2000) Spinal oligodendroglioma with gliomatosis in a child. Case report. J Neurosurg 92:109–113

    PubMed  CAS  Google Scholar 

  17. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929–944. https://doi.org/10.1016/j.cell.2014.06.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ et al (2014) Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510:537–541. https://doi.org/10.1038/nature13268

    Article  PubMed  CAS  Google Scholar 

  19. Huang T, Zimmerman RA, Perilongo G, Kaufman BA, Holden KR, Carollo C, Chong WK (2001) An unusual cystic appearance of disseminated low-grade gliomas. Neuroradiology 43:868–874

    Article  PubMed  CAS  Google Scholar 

  20. Jeuken JW, Wesseling P (2010) MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential. J Pathol 222:324–328. https://doi.org/10.1002/path.2780

    Article  PubMed  CAS  Google Scholar 

  21. Jones DT, Gronych J, Lichter P, Witt O, Pfister SM (2012) MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 69:1799–1811. https://doi.org/10.1007/s00018-011-0898-9

    Article  PubMed  CAS  Google Scholar 

  22. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DA et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932. https://doi.org/10.1038/ng.2682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677. https://doi.org/10.1158/0008-5472.CAN-08-2097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28:2119–2123. https://doi.org/10.1038/onc.2009.73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kessler BA, Bookhout C, Jaikumar S, Hipps J, Lee YZ (2015) Disseminated oligodendroglial-like leptomeningeal tumor with anaplastic progression and presumed extraneural disease: case report. Clin Imaging 39:300–304. https://doi.org/10.1016/j.clinimag.2014.11.018

    Article  PubMed  Google Scholar 

  26. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D, Perry A, Reifenberger G, Von Deimling A (2016) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon, France

  27. Perilongo G, Gardiman M, Bisaglia L, Rigobello L, Calderone M, Battistella A, Burnelli R, Giangaspero F (2002) Spinal low-grade neoplasms with extensive leptomeningeal dissemination in children. Childs Nerv Syst 18:505–512. https://doi.org/10.1007/s00381-002-0626-8

    Article  PubMed  Google Scholar 

  28. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749. https://doi.org/10.1172/JCI33656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Preuss M, Christiansen H, Merkenschlager A, Hirsch FW, Kiess W, Muller W, Kastner S, Henssler A, Pekrun A, Hauch H et al (2015) Disseminated oligodendroglial-like leptomeningeal tumors: preliminary diagnostic and therapeutic results for a novel tumor entity [corrected]. J Neurooncol 124:65–74. https://doi.org/10.1007/s11060-015-1735-z

    Article  PubMed  CAS  Google Scholar 

  30. Rhiew RB, Manjila S, Lozen A, Guthikonda M, Sood S, Kupsky WJ (2010) Leptomeningeal dissemination of a pediatric neoplasm with 1p19q deletion showing mixed immunohistochemical features of an oligodendroglioma and neurocytoma. Acta Neurochir (Wien) 152:1425–1429. https://doi.org/10.1007/s00701-010-0674-x

    Article  Google Scholar 

  31. Rodriguez FJ, Perry A, Rosenblum MK, Krawitz S, Cohen KJ, Lin D, Mosier S, Lin MT, Eberhart CG, Burger PC (2012) Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol 124:627–641. https://doi.org/10.1007/s00401-012-1037-x

    Article  PubMed  Google Scholar 

  32. Rodriguez FJ, Schniederjan MJ, Nicolaides T, Tihan T, Burger PC, Perry A (2015) High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol 129:609–610. https://doi.org/10.1007/s00401-015-1400-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rossi S, Rodriguez FJ, Mota RA, Dei Tos AP, Di Paola F, Bendini M, Agostini S, Longatti P, Jenkins RB, Giannini C (2009) Primary leptomeningeal oligodendroglioma with documented progression to anaplasia and t(1;19)(q10;p10) in a child. Acta Neuropathol 118:575–577. https://doi.org/10.1007/s00401-009-0565-5

    Article  PubMed  Google Scholar 

  34. Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, Capper D, Koelsche C, Korshunov A, Wiestler B et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910. https://doi.org/10.1007/s00401-015-1519-8

    Article  PubMed  CAS  Google Scholar 

  35. Schniederjan MJ, Alghamdi S, Castellano-Sanchez A, Mazewski C, Brahma B, Brat DJ, Brathwaite CD, Janss AJ (2013) Diffuse leptomeningeal neuroepithelial tumor: 9 pediatric cases with chromosome 1p/19q deletion status and IDH1 (R132H) immunohistochemistry. Am J Surg Pathol 37:763–771. https://doi.org/10.1097/PAS.0b013e31827bf4cc

    Article  PubMed  Google Scholar 

  36. Schwetye KE, Kansagra AP, McEachern J, Schmidt RE, Gauvain K, Dahiya S (2017) Unusual high-grade features in pediatric diffuse leptomeningeal glioneuronal tumor: comparison with a typical low-grade example. Hum Pathol. https://doi.org/10.1016/j.humpath.2017.06.004

    Article  PubMed  Google Scholar 

  37. Stodberg T, Deniz Y, Esteitie N, Jacobsson B, Mousavi-Jazi M, Dahl H, Zweygberg Wirgart B, Grillner L, Linde A (2002) A case of diffuse leptomeningeal oligodendrogliomatosis associated with HHV-6 variant A. Neuropediatrics 33:266–270. https://doi.org/10.1055/s-2002-36739

    Article  PubMed  CAS  Google Scholar 

  38. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, Sill M, Buchhalter I, Northcott PA, Leis I et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tatevossian RG, Lawson AR, Forshew T, Hindley GF, Ellison DW, Sheer D (2010) MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol 222:509–514. https://doi.org/10.1002/jcp.21978

    Article  PubMed  CAS  Google Scholar 

  40. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  PubMed  CAS  Google Scholar 

  41. van der Maaten L, Hinton G (2008) Visualizing Data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  42. Zebisch A, Troppmair J (2006) Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 63:1314–1330. https://doi.org/10.1007/s00018-006-6005-y

    Article  PubMed  CAS  Google Scholar 

  43. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612. https://doi.org/10.1038/ng.2611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Everest Centre for Low-grade Paediatric Brain Tumours (The Brain Tumour Charity, UK), A Kids’ Brain Tumor Cure (PLGA) Foundation, the German Cancer Consortium (DKTK), and fellowships from the Mildred-Scheel doctoral program of the German Cancer Aid and the German National Academic Foundation (to M.Y.D.). Sebastian Brandner was partially supported by the National Institute of Health Research (NIHR) UCLH/UCL Biomedical Research Centre. For excellent technical support and expertise we sincerely thank the Microarray Unit of the German Cancer Research Center (DKFZ) Genomics and Proteomics Core Facility, and Hai-Yen Nguyen and Laura Doerner (Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Sahm or David T. W. Jones.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 18 kb)

Supplementary material 2 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M.Y., Sill, M., Chiang, J. et al. Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol 136, 239–253 (2018). https://doi.org/10.1007/s00401-018-1865-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1865-4

Keywords

Navigation