Skip to main content

Advertisement

Log in

Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1–3 arose in older children (median ages 5.2–14.0 years) and had intermediate to excellent survival (5-year OS of 68.0–100%), while Group RB and MYC PB patients were much younger (median age 1.3–1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age < 3 years at diagnosis, metastatic disease, omission of upfront radiation, and chr 16q loss as significant negative prognostic factors across all PBs. Our findings demonstrate that PB exhibits substantial molecular heterogeneity with sub-group-associated clinical phenotypes and survival. In addition to revealing novel biology and therapeutics, molecular sub-grouping of PB can be exploited to reduce treatment intensity for patients with favorable biology tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. https://doi.org/10.1002/0471142905.hg0720s76 (Chapter 7:Unit7)

    Article  PubMed  PubMed Central  Google Scholar 

  2. An J, Wang C, Deng Y, Yu L, Huang H (2014) Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep 6:657–669. https://doi.org/10.1016/j.celrep.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anglesio MS, Wang Y, Yang W, Senz J, Wan A, Heravi-Moussavi A et al (2013) Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 229:400–409. https://doi.org/10.1002/path.4135

    Article  CAS  PubMed  Google Scholar 

  4. Baldi A, Esposito V, De Luca A, Fu Y, Meoli I, Giordano GG et al (1997) Differential expression of Rb2/p130 and p107 in normal human tissues and in primary lung cancer. Clin Cancer Res 3:1691–1697

    CAS  PubMed  Google Scholar 

  5. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689. https://doi.org/10.1038/ng.2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blach LE, McCormick B, Abramson DH, Ellsworth RM (1994) Trilateral retinoblastoma—incidence and outcome: a decade of experience. Int J Radiat Oncol Biol Phys 29:729–733

    Article  CAS  PubMed  Google Scholar 

  7. Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A et al (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814. https://doi.org/10.1074/jbc.M112.437996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39. https://doi.org/10.1038/nm972

    Article  CAS  PubMed  Google Scholar 

  10. Chen HY, Chen RH (2016) Cullin 3 ubiquitin ligases in cancer biology: functions and therapeutic implications. Front Oncol 6:113. https://doi.org/10.3389/fonc.2016.00113

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chintagumpala M, Hassall T, Palmer S, Ashley D, Wallace D, Kasow K et al (2009) A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro Oncol 11:33–40. https://doi.org/10.1215/15228517-2008-079

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM et al (2011) miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 25:1734–1745. https://doi.org/10.1101/gad.17027411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D'Andrilli G, Masciullo V, Bagella L, Tonini T, Minimo C, Zannoni GF et al (2004) Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res 10:3098–3103. https://doi.org/10.1158/1078-0432.ccr-03-0524

    Article  CAS  PubMed  Google Scholar 

  14. de Jong MC, Kors WA, de Graaf P, Castelijns JA, Kivelä T, Moll AC (2014) Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol 15:1157–1167. https://doi.org/10.1016/S1470-2045(14)70336-5

    Article  PubMed  Google Scholar 

  15. de Kock L, Sabbaghian N, Druker H, Weber E, Hamel N, Miller S et al (2014) Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 128:583–595. https://doi.org/10.1007/s00401-014-1318-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Vito C, Riggi N, Cornaz S, Suva ML, Baumer K, Provero P et al (2012) A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21:807–821. https://doi.org/10.1016/j.ccr.2012.04.023

    Article  CAS  PubMed  Google Scholar 

  17. Farnia B, Allen PK, Brown PD, Khatua S, Levine NB, Li J et al (2014) Clinical outcomes and patterns of failure in pineoblastoma: a 30-year, single-institution retrospective review. World Neurosurg 82:1232–1241. https://doi.org/10.1016/j.wneu.2014.07.010

    Article  PubMed  Google Scholar 

  18. Fevre-Montange M, Vasiljevic A, Frappaz D, Champier J, Szathmari A, Aubriot Lorton MH et al (2012) Utility of Ki67 immunostaining in the grading of pineal parenchymal tumours: a multicentre study. Neuropathol Appl Neurobiol 38:87–94. https://doi.org/10.1111/j.1365-2990.2011.01202.x

    Article  CAS  PubMed  Google Scholar 

  19. Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14:662–672. https://doi.org/10.1038/nrc3802

    Article  CAS  PubMed  Google Scholar 

  20. Friedrich C, von Bueren AO, von Hoff K, Gerber NU, Ottensmeier H, Deinlein F et al (2013) Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro Oncol 15:224–234. https://doi.org/10.1093/neuonc/nos292

    Article  CAS  PubMed  Google Scholar 

  21. Garre P, Perez-Segura P, Diaz-Rubio E, Caldes T, de la Hoya M (2010) Reassessing the TARBP2 mutation rate in hereditary nonpolyposis colorectal cancer. Nat Genet 42:817–818. https://doi.org/10.1038/ng1010-817

    Article  CAS  PubMed  Google Scholar 

  22. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53. https://doi.org/10.1038/nature14664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilheeney SW, Saad A, Chi S, Turner C, Ullrich NJ, Goumnerova L et al (2008) Outcome of pediatric pineoblastoma after surgery, radiation and chemotherapy. J Neurooncol 89:89–95. https://doi.org/10.1007/s11060-008-9589-2

    Article  PubMed  Google Scholar 

  24. Gonzales M (2001) The 2000 World Health Organization classification of tumours of the nervous system. J Clin Neurosci 8:1–3. https://doi.org/10.1054/jocn.2000.0829

    Article  CAS  PubMed  Google Scholar 

  25. Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML et al (2005) Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23:7312–7321. https://doi.org/10.1200/JCO.2005.01.2799

    Article  CAS  PubMed  Google Scholar 

  26. Gurtan AM, Lu V, Bhutkar A, Sharp PA (2012) In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18:1116–1122. https://doi.org/10.1261/rna.032680.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gururangan S, McLaughlin C, Quinn J, Rich J, Reardon D, Halperin EC et al (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 21:2187–2191. https://doi.org/10.1200/JCO.2003.10.096

    Article  CAS  PubMed  Google Scholar 

  28. Heravi-Moussavi A, Anglesio MS, Cheng SW, Senz J, Yang W, Prentice L et al (2012) Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med 366:234–242. https://doi.org/10.1056/NEJMoa1102903

    Article  CAS  PubMed  Google Scholar 

  29. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the Children's Oncology Group Randomized ACNS0332 trial. J Clin Oncol. https://doi.org/10.1200/JCO.2017.76.4720

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jakacki RI, Burger PC, Kocak M, Boyett JM, Goldwein J, Mehta M et al (2015) Outcome and prognostic factors for children with supratentorial primitive neuroectodermal tumors treated with carboplatin during radiotherapy: a report from the Children's Oncology Group. Pediatr Blood Cancer 62:776–783. https://doi.org/10.1002/pbc.25405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jakacki RI, Zeltzer PM, Boyett JM, Albright AL, Allen JC, Geyer JR et al (1995) Survival and prognostic factors following radiation and/or chemotherapy for primitive neuroectodermal tumors of the pineal region in infants and children: a report of the Childrens Cancer Group. J Clin Oncol 13:1377–1383. https://doi.org/10.1200/JCO.1995.13.6.1377

    Article  CAS  PubMed  Google Scholar 

  32. Jouvet A, Vasiljevic A, Nakazato Y, Tanaka S (2016) Tumours of the pineal region. In: Louis D (ed) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer, Lyon, France, pp 170–182

    Google Scholar 

  33. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23:2700–2704. https://doi.org/10.1101/gad.1848209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lambert MP, Arulselvan A, Schott A, Markham SJ, Crowley TB, Zackai EH et al (2018) The 22q11.2 deletion syndrome: cancer predisposition, platelet abnormalities and cytopenias. Am J Med Genet A 176:2121–2127. https://doi.org/10.1002/ajmg.a.38474

    Article  PubMed  Google Scholar 

  35. Lee JC, Mazor T, Lao R, Wan E, Diallo AB, Hill NS et al (2019) Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathol. https://doi.org/10.1007/s00401-019-01990-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26:262–272. https://doi.org/10.1016/j.ccr.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333. https://doi.org/10.1038/nrc3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Z, Gersbach E, Zhang X, Xu X, Dong R, Lee P et al (2013) miR-106a represses the Rb tumor suppressor p130 to regulate cellular proliferation and differentiation in high-grade serous ovarian carcinoma. Mol Cancer Res 11:1314–1325. https://doi.org/10.1158/1541-7786.MCR-13-0131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lohmann DR, Gerick M, Brandt B, Oelschlager U, Lorenz B, Passarge E et al (1997) Constitutional RB1-gene mutations in patients with isolated unilateral retinoblastoma. Am J Hum Genet 61:282–294. https://doi.org/10.1086/514845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Massimino M, Gandola L, Spreafico F, Luksch R, Collini P, Giangaspero F et al (2006) Supratentorial primitive neuroectodermal tumors (S-PNET) in children: a prospective experience with adjuvant intensive chemotherapy and hyperfractionated accelerated radiotherapy. Int J Radiat Oncol Biol Phys 64:1031–1037. https://doi.org/10.1016/j.ijrobp.2005.09.026

    Article  PubMed  Google Scholar 

  41. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41. https://doi.org/10.1186/gb-2011-12-4-r41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC et al (2011) Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol 13:866–879. https://doi.org/10.1093/neuonc/nor070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moll AC, Imhof SM, Bouter LM, Kuik DJ, Den Otter W, Bezemer PD et al (1996) Second primary tumors in patients with hereditary retinoblastoma: a register-based follow-up study, 1945–1994. Int J Cancer 67:515–519. https://doi.org/10.1002/(SICI)1097-0215(19960807)67:4%3c515:AID-IJC9%3e3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  44. Mummert SK, Lobanenkov VA, Feinberg AP (2005) Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor. Genes Chromosomes Cancer 43:155–161. https://doi.org/10.1002/gcc.20176

    Article  CAS  PubMed  Google Scholar 

  45. Mynarek M, Pizer B, Dufour C, van Vuurden D, Garami M, Massimino M et al (2017) Evaluation of age-dependent treatment strategies for children and young adults with pineoblastoma: analysis of pooled European Society for Paediatric Oncology (SIOP-E) and US Head Start data. Neuro Oncol 19:576–585. https://doi.org/10.1093/neuonc/now234

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen L, Crawford JR (2018) Pineosblastoma in a child with 22q11.2 deletion syndrome. BMJ Case Rep. https://doi.org/10.1136/bcr-2018-226434

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nittner D, Lambertz I, Clermont F, Mestdagh P, Kohler C, Nielsen SJ et al (2012) Synthetic lethality between Rb, p53 and Dicer or miR-17-92 in retinal progenitors suppresses retinoblastoma formation. Nat Cell Biol 14:958–965. https://doi.org/10.1038/ncb2556

    Article  CAS  PubMed  Google Scholar 

  48. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pan Z, He H, Tang L, Bu Q, Cheng H, Wang A et al (2017) Loss of heterozygosity on chromosome 16q increases relapse risk in Wilms’ tumor: a meta-analysis. Oncotarget 8:66467–66475. https://doi.org/10.18632/oncotarget.20191

    Article  PubMed  PubMed Central  Google Scholar 

  50. Parikh KA, Venable GT, Orr BA, Choudhri AF, Boop FA, Gajjar AJ et al (2017) Pineoblastoma—the experience at St. Jude Children's Research Hospital. Neurosurgery 81:120–128. https://doi.org/10.1093/neuros/nyx005

    Article  PubMed  Google Scholar 

  51. Priya K, Jada SR, Quah BL, Quah TC, Lai PS (2009) High incidence of allelic loss at 16q12.2 region spanning RBL2/p130 gene in retinoblastoma. Cancer Biol Ther 8:714–717. https://doi.org/10.4161/cbt.8.8.7921

    Article  CAS  PubMed  Google Scholar 

  52. Pugh TJ, Yu W, Yang J, Field AL, Ambrogio L, Carter SL et al (2014) Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene 33:5295–5302. https://doi.org/10.1038/onc.2014.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC et al (2014) Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2:4802. https://doi.org/10.1038/ncomms5802

    Article  CAS  PubMed  Google Scholar 

  54. Ramaswamy V, Remke M, Adamski J, Bartels U, Tabori U, Wang X et al (2016) Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients? Neuro Oncol 18:291–297. https://doi.org/10.1093/neuonc/nou357

    Article  PubMed  Google Scholar 

  55. Ramaswamy V, Taylor MD (2017) Medulloblastoma: from myth to molecular. J Clin Oncol 35:2355–2363. https://doi.org/10.1200/JCO.2017.72.7842

    Article  CAS  PubMed  Google Scholar 

  56. Saab R, Rodriguez-Galindo C, Matmati K, Rehg JE, Baumer SH, Khoury JD et al (2009) p18Ink4c and p53 Act as tumor suppressors in cyclin D1-driven primitive neuroectodermal tumor. Cancer Res 69:440–448. https://doi.org/10.1158/0008-5472.CAN-08-1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sabbaghian N, Hamel N, Srivastava A, Albrecht S, Priest JR, Foulkes WD (2012) Germline DICER1 mutation and associated loss of heterozygosity in a pineoblastoma. J Med Genet 49:417–419. https://doi.org/10.1136/jmedgenet-2012-100898

    Article  CAS  PubMed  Google Scholar 

  58. SEER Cancer Statistics Review 1975–2015, Table 29.1 (2019) https://seer.cancer.gov/csr/1975_2015/browse_csr.php. Accessed 1 July 2019

  59. Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I et al (2019) A C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked super-enhancers is a distinct therapeutic vulnerability in ETMRs: a lethal brain tumor. Cancer Cell 36:51–67.e57. https://doi.org/10.1016/j.ccell.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  60. Snuderl M, Kannan K, Pfaff E, Wang S, Stafford JM, Serrano J et al (2018) Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 9:2868. https://doi.org/10.1038/s41467-018-05029-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stevens T, Van der Werff Ten Bosch J, De Rademaeker M, Van Den Bogaert A, van den Akker M (2017) Risk of malignancy in 22q11.2 deletion syndrome. Clin Case Rep 5:486–490. https://doi.org/10.1002/ccr3.880

    Article  PubMed  PubMed Central  Google Scholar 

  62. Susini T, Massi D, Paglierani M, Masciullo V, Scambia G, Giordano A et al (2001) Expression of the retinoblastoma-related gene Rb2/p130 is downregulated in atypical endometrial hyperplasia and adenocarcinoma. Hum Pathol 32:360–367. https://doi.org/10.1053/hupa.2001.23514

    Article  CAS  PubMed  Google Scholar 

  63. Timmermann B, Kortmann RD, Kuhl J, Rutkowski S, Meisner C, Pietsch T et al (2006) Role of radiotherapy in supratentorial primitive neuroectodermal tumor in young children: results of the German HIT-SKK87 and HIT-SKK92 trials. J Clin Oncol 24:1554–1560. https://doi.org/10.1200/JCO.2005.04.8074

    Article  PubMed  Google Scholar 

  64. Torchia J, Golbourn B, Feng S, Ho KC, Sin-Chan P, Vasiljevic A et al (2016) Integrated (epi)-genomic analyses identify subgroup-specific therapeutic targets in CNS rhabdoid tumors. Cancer Cell 30:891–908. https://doi.org/10.1016/j.ccell.2016.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR et al (2014) Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun 5:4039. https://doi.org/10.1038/ncomms5039

    Article  CAS  PubMed  Google Scholar 

  66. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9. https://doi.org/10.1038/nprot.2015.123

    Article  CAS  PubMed  Google Scholar 

  67. Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM et al (2015) Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27:286–297. https://doi.org/10.1016/j.ccell.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wegert J, Ishaque N, Vardapour R, Georg C, Gu Z, Bieg M et al (2015) Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27:298–311. https://doi.org/10.1016/j.ccell.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  69. Zhu Y, Gu J, Li Y, Peng C, Shi M, Wang X et al (2018) MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes. Cancer Lett 412:59–68. https://doi.org/10.1016/j.canlet.2017.09.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RBTC biorepository and contributing tumor bank including NeuroBioTec Collection (Groupement Hospitalier Est, Bron, France), J. Loukides for biological specimens; C. Hanzen, I. Tennevet, O. Langlois, D. Frappaz for clinical data; M. Fèvre-Montange for histopathologic review with A. J.; A Field for targeted panel design. This project was funded by the Canadian Institutes of Health Research (Grant no. 137011) and b.r.a.i.n.child to A. H. D.A.H. is supported by the NIH/NCI (Grant 2R01CA143167). B.K.L. is a Garron Family Cancer Centre Research Fellow. AH holds a Tier 1 Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Anne Jouvet: Posthumous—permission has been obtained from direct relatives.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2019_2111_MOESM1_ESM.pdf

Supplementary Figure 1 PBs comprise 5 molecular sub-groups. Global methylation data generated from 72 PBs using Illumina 450K or EPIC arrays were analyzed using NMF, HCL and K-means clustering methods to identify molecular sub-groups. a. Non-matrix factorization (NMF) analyses were performed on global methylation data using top 5000-15, 000 DNA methylation probes as determined by standard deviation (SD). Highest co-phonetic score was determined at rank (k) = 5 with 5000 probes; corresponding NMF heat map generated with 5000 probes is shown with PB sub-group designation. b. Silhouette plot of NMF analysis indicating best fit of individual PB sample within molecular sub-group. c. Hierarchal (HCL) and K-means cluster analyses of global methylation data using the 5000 most variable probes by standard deviation indicating 5 sub-groups of PBs. Supplementary Figure 2 SNP array copy number analyses of PB. Copy number calls were generated using ASCAT (Allele specific copy number analysis of tumor) on Illumina Omni SNP array data generated from PBs. a. ASCAT for group 2 tumor RBTC814 showing homozygous chr 14 loss. b. ASCAT plot for group RB tumor RBTC746 showing homozygous RB1 loss and gain of miR-17/92. Supplementary Figure 3 Schematic of hotspot mutations in Kelch domain of KBTBD4. a. IGV screenshot of aligned reads from whole exome sequencing of RBTC786 and -793 demonstrating in-frame insertions in KBTBD4, resulting in identical p.P311_R312 duplication mutation. Comparison is made to the same mutation reported by Lee JC, et al. 2019. b. Mapped in-frame insertions (in yellow) in our cohort, compared to those described by Lee JC, et al. in three PPTID samples, which are identical to that seen in RBTC793. All mutations result in the same p.P311_R312 duplication mutation. Supplementary Figure 4 Impact of age, metastatic status and radiation treatment on PB survival. Event-free (EFS) and overall survival (OS) analyses were determined for 46 patients treated with curative intent, using the Kaplan–Meier method and log-rank tests. a. EFS and OS of patients <3 or ≥3 years age at diagnosis. 5-yr EFS: 18.2 vs 58.2%; 5-yr OS: 24.2 vs. 77.0% for <3 yrs vs. ≥3 yrs. b. EFS and OS of patients without (M0) and with metastases (M+) at diagnosis. 5-yr EFS: 29.4 vs. 60.5%; 5-yr OS: 44.9 vs. 78.7% for M+ vs. M0. c. EFS and OS of patients treated with and without upfront radiation therapy. 5-yr EFS: 10.0 vs. 58.8%; 5-yr OS: 40.0 vs. 71.0% for not radiated vs. radiated. Supplementary Figure 5 Impact of chr 16 loss on event-free and overall survival of PB survival. Event-free (EFS) and overall survival (OS) analyses were determined for 46 patients treated with curative intent, stratified by chr 16 loss or no chr 16 q loss in tumor specimens, using the Kaplan–Meier method and log-rank tests. 5-yr EFS: 17.6 vs. 61.1%; 5-yr OS: 52.1 vs. 70.0% for chr 16q loss vs. no loss. Supplementary Table 1 Molecular analysis performed on tumors and blood samples. Supplementary Table 2 Reported Ki67/MIB-1 scores and presence of hotspot KBTBD4 mutation among PB. Supplementary Table 3 Clinical characteristics and treatment details for PB patients (PDF 4949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B.K., Vasiljevic, A., Dufour, C. et al. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Acta Neuropathol 139, 223–241 (2020). https://doi.org/10.1007/s00401-019-02111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02111-y

Keywords

Navigation