Skip to main content
Log in

Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objectives

Traditional therapy of staphylococcal osteomyelitis is ineffective in producing complete sterilization of infected bones due to the formation of the Staphylococcus aureus biofilms. The aim of this study was to develop a new drug-delivery system of antibiotics for treatment of chronic experimental osteomyelitis.

Methods

In the current work, cationic liposomal gentamicin was prepared and impregnated in calcium sulfate (CS), and tested for anti-biofilm activities in vitro and in vivo.

Results and conclusions

The combination of liposomal gentamicin and CS showed initial burst-release of active liposomal gentamicin and had continuous-release (12 days). Liposomal gentamicin released from CS had the same anti-biofilm activity with the liposomal gentamicin prepared freshly. Meanwhile, both agents were more effective relative to free gentamicin at low drug concentration. Therapeutic trials with antibiotics given intravenously revealed that free gentamicin for 14 days was ineffective in sterilizing bone. Treatment with liposomal gentamicin for 14 days resulted in recovery of 33.3% of treated animals, which was the lower slightly than the result treated with implantation of gentamicin-impregnated CS (66.7%). Complete sterilization of bone tissues on cultures (100% cure) was obtained only in the group of liposomal gentamicin-impregnated CS treated for 14 days. The new drug-delivery system was effective in preventing biofilm infection in a contaminated defect, and it could also be used clinically for bacterial infections in the conditions like plaque formation or in arresting biofilm formation in the implanted devices or dead bone of osteomyelitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berestein GL (1987) Liposomes as carriers of antimicrobial agents. Antimicrob Agents Chemother 31:675–678

    Google Scholar 

  2. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed  CAS  Google Scholar 

  3. Chang W, Colangeli M, Colangeli S, Di Bella C, Gozzi E, Donati D (2007) Adult osteomyelitis: debridement versus debridement plus Osteoset T pellets. Acta Orthop Belg 73:238–243

    PubMed  Google Scholar 

  4. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. doi:10.1126/science.284.5418.1318

    Article  PubMed  CAS  Google Scholar 

  5. Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166. doi:10.1128/CMR.15.2.155-166.2002

    Article  PubMed  CAS  Google Scholar 

  6. Eng RH, Padberg FT, Smith SM, Tan EN, Cherubin CE (1991) Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35:1824–1828

    PubMed  CAS  Google Scholar 

  7. Faber C, Stallmann HP, Lyaruu DM, de Blieck JM, Bervoets TJ, van Nieuw Amerongen A, Wuisman PI (2003) Release of antimicrobial peptide Dhvar-5 from polymethylmethacrylate beads. J Antimicrob Chemother 51:1359–1364. doi:10.1093/jac/dkg258

    Article  PubMed  CAS  Google Scholar 

  8. Furneri PM, Fresta M, Puglisi G, Tempera G (2000) Ofloxacinloaded liposomes: in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother 44:2458–2464. doi:10.1128/AAC.44.9.2458-2464.2000

    Article  PubMed  CAS  Google Scholar 

  9. Hienz SA, Sakamoto H, Flock JI, Mörner AC, Reinholt FP, Heimdahl A, Nord CE (1995) Development and characterization of a new model of hematogenous osteomyelitis in the rat. J Infect Dis 171:1230–1236

    PubMed  CAS  Google Scholar 

  10. Illera JC, González Gil A, Silván G, Illera M (2000) The effects of different anaesthetic treatments on the adreno-cortical functions and glucose levels in NZW rabbits. J Physiol Biochem 56:329–336

    Article  PubMed  CAS  Google Scholar 

  11. Ince A, Schütze N, Hendrich C, Jakob F, Eulert J, Löhr JF (2007) Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly 137:139–145

    PubMed  CAS  Google Scholar 

  12. Jones MN (2005) Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol 391:211–228. doi:10.1016/S0076-6879(05)91013-6

    Article  PubMed  CAS  Google Scholar 

  13. Kadry AA, Al-Suwayeh SA, Abd-Allah AR, Bayomi MA (2004) Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother 54:1103–1108. doi:10.1093/jac/dkh465

    Article  PubMed  CAS  Google Scholar 

  14. Kim HJ, Jones MN (2004) The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 14:123–139. doi:10.1081/LPR-200029887

    Article  PubMed  CAS  Google Scholar 

  15. Kim HJ, Michael GE, Jones MN (1999) The adsorption of cationic liposomes to S. aureus biofilms. Colloids Surf A Physicochem Eng Asp 149:561–570

    Article  CAS  Google Scholar 

  16. Lambe DW Jr, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW (1991) Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res 266:285–294

    PubMed  Google Scholar 

  17. Matl FD, Obermeier A, Repmann S, Friess W, Stemberger A, Kuehn KD (2008) New anti-infective coatings of medical implants based on lipid-like drug carriers. Antimicrob Agents Chemother (Epub ahead of print)

  18. Moghimi SM, Porter CJ, Illum L, Davis SS (1991) The effect of poloxamer-407 on liposome stability and targeting to bone marrow: comparison with polystyrene microspheres. Int J Pharm 68:121–126. doi:10.1016/0378-5173(91)90134-A

    Article  CAS  Google Scholar 

  19. Morgan JR, Williams KE (1980) Preparation and properties of liposome-associated gentamicin. Antimicrob Agents Chemother 17:544–548

    PubMed  CAS  Google Scholar 

  20. Norden CW (1971) Experimental osteomyelitis. II. Therapeutic trials and measurement of antibiotic levels in bone. J Infect Dis 124:565–571

    PubMed  CAS  Google Scholar 

  21. Norden CW (1975) Experimental osteomyelitis. IV. Therapeutic trials with rifampin alone and in combination with gentamicin, sisomicin, and cephalothin. J Infect Dis 132:493–499

    CAS  Google Scholar 

  22. Norden CW (1983) Experimental chronic staphylococcal osteomyelitis in rabbits: treatment with rifampin alone and in combination with other antimicrobial agents. Rev Infect Dis 5:S491–S494

    PubMed  CAS  Google Scholar 

  23. Norden CW, Keleti E (1980) Treatment of experimental staphylococcal osteomyelitis with rifampin and trimethoprim, alone and in combination. Antimicrob Agents Chemother 17:591–594

    PubMed  CAS  Google Scholar 

  24. Norden CW, Keleti E (1980) Experimental osteomyelitis caused by Pseudomonas aeruginosa. J Infect Dis 141:71–75

    PubMed  CAS  Google Scholar 

  25. Norden CW, Shaffer M (1983) Treatment of experimental chronic osteomyelitis due to S. aureus with gentamicin and rifampin. J Infect Dis 147:352–357

    PubMed  CAS  Google Scholar 

  26. Norden CW, Shinners E (1985) Ciprofloxacin as therapy for experimental osteomyelitis caused by Pseudomonas aeruginosa. J Infect Dis 151:291–294

    PubMed  CAS  Google Scholar 

  27. Norden CW, Shinners E, Niederriter K (1986) Clindamycin treatment of experimental chronic osteomyelitis due to S. aureus. J Infect Dis 153:956–959

    PubMed  CAS  Google Scholar 

  28. Power ME, Olson ME, Domingue PA, Costerton JW (1990) A rat model of S. aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J Med Microbiol 33:189–198

    Article  PubMed  CAS  Google Scholar 

  29. Ravaoarinoro M, Toma E, Agbaba O, Morisset R (1993) Efficient entrapment of amikacin and teicoplanin in liposomes. J Drug Target 1:191–195. doi:10.3109/10611869308996076

    Article  PubMed  CAS  Google Scholar 

  30. Schafer JA, Hovde LB, Rotschafer JC (2006) Consistent rates of kill of Staphylococcus aureus by gentamicin over a 6-fold clinical concentration range in an in vitro pharmacodynamic model (IVPDM). J Antimicrob Chemother 58:108–111. doi:10.1093/jac/dkl216

    Article  PubMed  CAS  Google Scholar 

  31. Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48:333–344. doi:10.1093/jac/48.3.333

    Article  PubMed  CAS  Google Scholar 

  32. Spagnolo N, Greco F, Rossi A, Ciolli L, Teti A, Posteraro P (1993) Chronic staphylococcal osteomyelitis: a new experimental rat model. Infect Immun 61:5225–5230

    PubMed  CAS  Google Scholar 

  33. Stallmann HP, Faber C, Slotema ET, Lyaruu DM, Bronckers AL, Amerongen AV, Wuisman PI (2003) Continuous-release or burst-release of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11) from calcium phosphate bone substitutes. J Antimicrob Chemother 52:853–855. doi:10.1093/jac/dkg443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Technical Department of Yunnan province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yongqing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, T., Yongqing, X., Tiane, Z. et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg 129, 1301–1308 (2009). https://doi.org/10.1007/s00402-008-0782-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0782-8

Keywords

Navigation