Skip to main content

Advertisement

Log in

The effects of different lignans and isoflavones, tested as aglycones and glycosides, on hormone receptor-positive and -negative breast carcinoma cells in vitro

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Phytooestrogens are known to cause anti-cancer effects on mamma carcinoma cells. In this study, the effects of the lignan secoisolariciresinol and the isoflavone glycosides and aglycones genistein, genistin, daidzein and daidzin were tested on MCF-7 and BT20 cells in vitro.

Methods

First, the cellular expression of hormone receptors was examined by immunohistochemical procedures. The effects of the phytooestrogens on the cells were detected by using three different assays measuring cell letality, viability and proliferation. The phytooestrogens were tested in concentrations of 1, 5, 10 and 50 μg/mL, respectively. 17β-oestradiol and tamoxifen were used as controls, respectively, in the same concentrations as the phytooestrogens.

Results

The immunohistochemistry showed evidence of oestrogen- and progesterone receptors at the MCF-7 cell line, whereas no expression could be seen at the BT20 cells. Among the phytooestrogens, genistein and secoisolariciresinol showed various anti-cancerogenic effects on both cell lines, respectively, but only in the highest concentration. Regarding the controls, tamoxifen showed a stronger antivital and anti-proliferative effect on BT20 than on MCF-7. Oestradiol caused sporadic anti-cancer effects on both cell lines, respectively, at its highest concentration.

Conclusions

Genistein and Secoisolariciresinol have anti-cancer properties on MCF-7 and BT20 in vitro. There are differences in the effects of isoflavones depending on the glycolysation status. The role of the oestrogen receptors in the mechanisms of action of both the phytooestrogens and controls is of less importance. Further investigations have to be carried out, especially concerning the mechanisms of action. Phytooestrogens may be potential substances in the therapy of mamma carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adlercreutz H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 103(7):103–112

    Article  PubMed  CAS  Google Scholar 

  2. Coward L, Barnes NC, Setchell KD, Barnes S (1993) Genistein, daidzein, and their beta-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem 41(11):1961–1967

    Article  CAS  Google Scholar 

  3. Piskula MK, Yamakoshi J, Iwai Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett 447(2–3):287–291

    Article  PubMed  CAS  Google Scholar 

  4. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436(1):71–75

    Article  PubMed  CAS  Google Scholar 

  5. Wilkinson AP, Gee JM, Dupont MS, Needs PW, Mellon FA, Williamson G, Johnson IT (2003) Hydrolysis by lactase phlorizin hydrolase is the first step in the uptake of daidzein glucosides by rat small intestine in vitro. Xenobiotica 33(3):255–264

    Article  PubMed  CAS  Google Scholar 

  6. Niemeyer HB, Honig DM, Kulling SE, Metzler M (2003) Studies on the metabolism of the plant lignans secoisolariciresinol and matairesinol. J Agric Food Chem 51(21):6317–6325

    Article  PubMed  CAS  Google Scholar 

  7. Lampe JW (2003) Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr 133(Suppl 3):956S–964S

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Hendrich S, Murphy P (2003) Glucuronides are the main isoflavone metabolites in women. J Nutr 133(2):399–404

    PubMed  CAS  Google Scholar 

  9. Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR (2000) Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr 130(8):1963–1970

    PubMed  CAS  Google Scholar 

  10. Kuijsten A, Arts IC, Vree TB, Hollman PC (2005) Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr 135(4):795–801

    PubMed  CAS  Google Scholar 

  11. Kulling SE, Honig DM, Metzler M (2001) Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J Agric Food Chem 49(6):3024–3033

    Article  PubMed  CAS  Google Scholar 

  12. Murkies AL, Wilcox G, Davis SR (1998) Clinical review 92: phytoestrogens. J Clin Endocrinol Metab 83(2):297–303

    Article  PubMed  CAS  Google Scholar 

  13. Chen WF, Huang MH, Tzang CH, Yang M, Wong MS (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophy Acta 1638(2):187–196

    CAS  Google Scholar 

  14. Shim HY, Park JH, Paik HD, Nah SY, Kim DS, Han YS (2007) Genistein induced apoptosis of human breast cancer MCF-7 cells involves calpain-caspase and apoptosis signaling kinase 1-p38 mitogen-activated protein kinase activation cascades. Anticancer Drugs 18(6):649–657

    Article  PubMed  CAS  Google Scholar 

  15. Leung LK, Wang TT (2000) Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration. J Nutr 130(12):2922–2926

    PubMed  CAS  Google Scholar 

  16. Hsieh CY, Santell RC, Haslam SZ, Helferich WG (1998) Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58(17):3833–3838

    PubMed  CAS  Google Scholar 

  17. Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G (2000) Genistein blocks breast cancer cells in the G(2)M phase of the cell cycle. J Cell Biochem 79(4):594–600

    Article  PubMed  CAS  Google Scholar 

  18. Dampier K, Hudson EA, Howells LM, Manson MM, Walker RA, Gescher A (2001) Differences between human breast cell lines in susceptibility towards growth inhibition by genistein. Br J Cancer 85(4):618–624

    Article  PubMed  CAS  Google Scholar 

  19. Shao ZM, Shen ZZ, Fontana JA, Barsky SH (2000) Genistein’s “ER-dependent and independent” actions are mediated through ER pathways in ER-positive breast carcinoma cell lines. Anticancer Res 20(4):1–2409

    Google Scholar 

  20. Chinni SR, Alhasan SA, Multani AS, Pathak S, Sarkar FH (2003) Pleotropic effects of genistein on MCF-7 breast cancer cells. Int J Mol Med 12(1):29–34

    PubMed  CAS  Google Scholar 

  21. Peterson G (1995) Evaluation of the biochemical targets of genistein in tumor cells. J Nutr 125(3 Suppl):784S–789S

    PubMed  CAS  Google Scholar 

  22. Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  PubMed  CAS  Google Scholar 

  23. Polkowski K, Popiołkiewicz J, Krzeczyński P, Ramza J, Pucko W, Zegrocka-Stendel O, Boryski J, Skierski JS, Mazurek AP, Grynkiewicz G (2004) Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett 203(1):59–69

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Song TT, Cunnick JE, Murphy PA, Hendrich S (1999) Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr 129(2):399–405

    PubMed  CAS  Google Scholar 

  25. Saarinen NM, Wärri A, Dings RP, Airio M, Smeds AI, Mäkelä S (2008) Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 123(5):1196–1204

    Article  PubMed  CAS  Google Scholar 

  26. Wang C, Kurzer MS (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr Cancer 28(3):236–247

    Article  PubMed  CAS  Google Scholar 

  27. Perry R, Kang Y, Greaves B (1995) Effects of tamoxifen on growth and apoptosis of estrogen-dependent and -independent human breast cancer cells. Ann Surg Oncol 2(3):238–245

    Article  PubMed  CAS  Google Scholar 

  28. Bachmann-Moisson N, Barberi-Heyob M, Merlin JL, Ledrich ML, Batt AM, Guillemin F (1996) Cytotoxicity of tamoxifen and its principal metabolites in human breast cancer cell lines. Bull Cancer 83(10):808–815

    PubMed  CAS  Google Scholar 

  29. Zheng A, Kallio A, Härkönen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology 148(6):2764–2777

    Article  PubMed  CAS  Google Scholar 

  30. Kallio A, Zheng A, Dahllund J, Heiskanen KM, Härkönen P (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10(6):1395–1410

    Article  PubMed  CAS  Google Scholar 

  31. Zhang W, Couldwell WT, Song H, Takano T, Lin JH, Nedergaard M (2000) Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res 60(19):5395–5400

    PubMed  CAS  Google Scholar 

  32. Boyan BD, Sylvia VL, Frambach T, Lohmann CH, Dietl J, Dean DD, Schwartz Z (2003) Estrogen-dependent rapid activation of protein kinase C in estrogenreceptor positive MCF-7 breast cancer cells and in estrogen-receptor negative HCC38 cells is membrane-mediated and inhibited be tamoxifen. Endocrinology 144(5):1812–1824

    Article  PubMed  CAS  Google Scholar 

  33. Furuya Y, Kohno N, Fujiwara Y, Saitoh Y (1989) Mechanisms of estrogen action on the proliferation of MCF-7 human breast cancer cells in an improved culture medium. Cancer Res 49(23):6670–6674

    PubMed  CAS  Google Scholar 

  34. Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I, Kladde MP, Vyhlidal C, Safe S (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem 274(45):32099–32107

    Article  PubMed  CAS  Google Scholar 

  35. Song RX, Fan P, Yue W, Chen Y, Santen RJ (2006) Role of receptor complexes in the extranuclear actions of estrogen receptor alpha in breast cancer. Endocr Relat Cancer 13(1):S3–S13

    Article  PubMed  CAS  Google Scholar 

  36. Urazumi K (1990) Human breast cancer cells under serum-free culture. Its hormone-dependency and application to the primary culture. Nippon Geka Gakkai Zasshi 91(6):718–728

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. E. Greschkowitz for technical assistance.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Briese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theil, C., Briese, V., Gerber, B. et al. The effects of different lignans and isoflavones, tested as aglycones and glycosides, on hormone receptor-positive and -negative breast carcinoma cells in vitro. Arch Gynecol Obstet 284, 459–465 (2011). https://doi.org/10.1007/s00404-010-1661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-010-1661-4

Keywords

Navigation