Skip to main content
Log in

Analysis of forces during robot-assisted and manual manipulations of mobile and fixed footplate in temporal bone specimens

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the forces involved in different manipulations, manual or robot-assisted, applied to the ossicular chain, on normal temporal bones and on an anatomical model of otosclerosis.

Methods

Thirteen cadaveric temporal bones, with mobile footplates or with footplates that were fixed using hydroxyapatite cement, were manipulated, manually or using a robotic arm (RobOtol®). “Short contact” of a mobile footplate was the weakest interaction on the incus. “Long contact” was the same manipulation held for 10 s. “Mobilization” was the smallest visualized movement of the mobile footplate, or the movement necessary to regain mobility of the fixed footplate. A six-axis force sensor (Nano17, ATI) measured the maximal peak of forces, summation of forces applied, and yank.

Results

Maximal forces during short (~4 mN) and long contact (~15 mN) were similar for manual and robot-assisted manipulations. For manual manipulation, yank measured during long contact was twice as high compared to robot-assisted manipulation: 6 ± 2.4 (n = 5) and 3 ± 1.3 mN/s (n = 5), respectively (mean ± SD, p < 0.02). For mobilization of the mobile footplate, maximal forces during mobilization were similar during manual and robot-assisted manipulations, respectively: 12 ± 2.5 (n = 6) and 19 ± 7.6 mN (n = 7). Compared with mobilization of a mobile footplate, mobilization of a fixed footplate required ~ 60 and ~ 27 times higher maximal forces for manual and robot-assisted manipulations, respectively: 724 ± 366.4 and 507 ± 283.2 mN. Yank was twice as high during manual manipulation compared to robot-assisted manipulation (p < 0.05).

Conclusion

Robot-assisted manipulation of the ossicular chain was reliable. Our anatomical model of otosclerosis was successfully developed requiring higher forces for stapes mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rubinstein M, Feldman B, Fischler H, Frei EH, Spira D (1966) Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J Acoust Soc Am 40:1420–1426. https://doi.org/10.1121/1.1910242

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen Y, Bernardeschi D, Sterkers O (2018) Potential of robot-based surgery for otosclerosis surgery. Otolaryngol Clin North Am 51:475–485. https://doi.org/10.1016/j.otc.2017.11.016

    Article  PubMed  Google Scholar 

  3. Mürbe D, Hüttenbrink KB, Zahnert T, Vogel U, Tassabehji M, Kuhlisch E, Hofmann G (2001) Tremor in otosurgery: influence of physical strain on hand steadiness. Otol Neurotol 22:672–677. https://doi.org/10.1097/00129492-200109000-00019

    Article  PubMed  Google Scholar 

  4. Óvári A, Heckeler C, Ehrt K, Bernd H-E, Pau H-W, Eiber A (2018) Three-dimensional force analysis of surgical manipulations at the long process of the incus. Eur Arch Otorhinolaryngol 1:63–70. https://doi.org/10.1007/s00405-018-5194-y

    Article  Google Scholar 

  5. Csókay A, Csókay G (2006) Catch fingertip support in microsurgery to reduce the tremor. Orv Hetil 147:1921–1922

    PubMed  Google Scholar 

  6. Kazmitcheff G, Nguyen Y, Miroir M, Péan F, Ferrary E, Cotin S, Sterkers O, Duriez C (2014) Middle-Ear microsurgery simulation to improve new robotic procedures. Biomed Res Int. https://doi.org/10.1155/2014/891742

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Seta E, Rispoli G, Balsamo G, Covelli E, De Seta D, Filipo R (2009) Indication for surgery in otosclerotic patients with unilateral hearing loss. Otol Neurotol 30:1116. https://doi.org/10.1097/MAO.0b013e3181bc3c22

    Article  PubMed  Google Scholar 

  8. Nguyen Y, Bozorg Grayeli A, Belazzougui R, Rodriguez M, Bouccara D, Smail M, Sterkers O (2008) Diode laser in otosclerosis surgery: first clinical results. Otol Neurotol 29:441–446. https://doi.org/10.1097/MAO.0b013e318164d140

    Article  PubMed  Google Scholar 

  9. House HP, Hansen MR, Dakhail AAAA, House JW (2002) Stapedectomy versus stapedotomy: comparison of results with long-term follow-up. Laryngoscope 112:2046–2050. https://doi.org/10.1097/00005537-200211000-00025

    Article  PubMed  Google Scholar 

  10. Kessel D (1878) Über das Mobilisieren des Steigbügels durch Ausschneiden des Trommelfelles, Hammers und Amboss bei Undurchgängigkeit der Tuba. Arch Ohrenheilkd 13:69–88

    Article  Google Scholar 

  11. Rosen S (1953) Mobilization of the stapes to restore hearing in otosclerosis. N Y State J Med 53:2650–2653

    CAS  PubMed  Google Scholar 

  12. Fee GA (1959) Two years’ experience with stapes mobilization. Can Med Assoc J 80:711–714

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosen S (1955) Mobilization at the footplate of the fixed stapedial footplate; further development of the mobilization technique for restoration of hearing in otosclerotic deafness. Acta Otolaryngol 45:532–543. https://doi.org/10.3109/00016485509124311

    Article  CAS  PubMed  Google Scholar 

  14. Sataloff RT (2007) Stapes mobilization revisited: primum non nocere. Ear Nose Throat J 86(126):129

    Google Scholar 

  15. Salmon C, Barriat S, Demanez L, Magis D, Lefebvre P (2015) Audiometric results after stapedotomy operations in patients with otosclerosis and preoperative small air-bone gaps. Audiol Neurotol 20:330–336. https://doi.org/10.1159/000433510

    Article  Google Scholar 

  16. Murrant NJ, Gatland DJ (1989) Temporal bone laboratory training for stapedectomy. J Laryngol Otol 103:833–834. https://doi.org/10.1017/s0022215100110230

    Article  CAS  PubMed  Google Scholar 

  17. Bergin M, Sheedy M, Ross P, Wylie G, Bird P (2014) Measuring the forces of middle ear surgery; evaluating a novel force-detection instrument. Otol Neurotol 35:e77-83. https://doi.org/10.1097/MAO.0000000000000173

    Article  PubMed  Google Scholar 

  18. Hüttenbrink KB (1993) Manipulating the mobile stapes during tympanoplasty: the risk of stapedial luxation. Laryngoscope 103:668–672. https://doi.org/10.1288/00005537-199306000-00016

    Article  PubMed  Google Scholar 

  19. Rosowski JJ, Davis PJ, Merchant SN, Donahue KM, Coltrera MD (1990) Cadaver middle ears as models for living ears: comparisons of middle ear input immittance. Ann Otol Rhinol Laryngol 99:403–412. https://doi.org/10.1177/000348949009900515

    Article  CAS  PubMed  Google Scholar 

  20. Sykopetrites V, Lahlou G, Torres R, Daoudi H, Mosnier I, Mazalaigue S, Ferrary E, Nguyen Y, Sterkers O (2020) Robot-based assistance in middle ear surgery and cochlear implantation: first clinical report. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-020-06070-z

    Article  PubMed  Google Scholar 

  21. Nguyen Y, Kazmitcheff G, De Seta D, Miroir M, Ferrary E, Sterkers O (2014) Definition of metrics to evaluate cochlear array insertion forces performed with forceps, insertion tool, or motorized tool in temporal bone specimens. Biomed Res Int. https://doi.org/10.1155/2014/532570

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miroir M, Szewczyk J, Nguyen Y, Mazalaigue S, Sterkers O (2008) Design of a robotic system for minimally invasive surgery of the middle ear. In: 2008 2nd IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics, pp. 747–752. https://doi.org/10.1109/BIOROB.2008.4762795

  23. Linder TE, Volkan G, Troxler E (2015) Objective measurements of ossicular chain mobility using a palpating instrument intraoperatively. Otol Neurotol 36:1669–1675. https://doi.org/10.1097/MAO.0000000000000889

    Article  PubMed  Google Scholar 

  24. Lauxmann M, Heckeler C, Beutner D, Lüers J-C, Hüttenbrink K-B, Chatzimichalis M, Huber A, Eiber A (2012) Experimental study on admissible forces at the incudomalleolar joint. Otol Neurotol 33:1077–1084. https://doi.org/10.1097/MAO.0b013e318259b34b

    Article  PubMed  Google Scholar 

  25. Lauxmann M, Eiber A, Haag F, Ihrle S (2014) Nonlinear stiffness characteristics of the annular ligament. J Acoust Soc Am 136:1756–1767. https://doi.org/10.1121/1.4895696

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen Y, Mamelle E, De Seta D, Sterkers O, Bernardeschi D, Torres R (2017) Modifications to a 3D-printed temporal bone model for augmented stapes fixation surgery teaching. Eur Ann Otorhinolaryngol Head Neck Dis 274:2733–2739. https://doi.org/10.1007/s00405-017-4572-1

    Article  Google Scholar 

  27. Maier T, Strauss G, Scholz M, Berger T, Kielhorn A, Entsfellner K, Willim C, Büscher W, Dietz A, Lueth TC (2012) A new evaluation and training system for micro-telemanipulation at the middle ear. In: 2012 Annu. Int. Conf. IEEE Eng Med Biol Soc, pp. 932–935. https://doi.org/10.1109/EMBC.2012.6346085

  28. Fiorino F, Barbieri F (2008) Reversal of the steps stapedotomy technique with early removal of the posterior crus: early postoperative results: how we do it. Clin Otolaryngol 33:359–362. https://doi.org/10.1111/j.1749-4486.2008.01707.x

    Article  CAS  PubMed  Google Scholar 

  29. Ambard AJ, Mueninghoff L (2006) Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15:321–328. https://doi.org/10.1111/j.1532-849X.2006.00129.x

    Article  PubMed  Google Scholar 

  30. Jesacher MO, Kiefer J, Zierhofer C, Fauser C (2010) Torque measurements of the ossicular chain: implication on the MRI safety of the hearing implant Vibrant Soundbridge. Otol Neurotol 31(4):676–680. https://doi.org/10.1097/MAO.0b013e3181d2d3f3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Société Française d’Otorhinolaryngologie et de chirurgie de la face et du cou for their financial support (HD).

Funding

Fondation pour l’Audition (Hearing Institute starting grant), Société Française d’Otorhinolaryngologie et de chirurgie de la face et du cou, Agence Nationale de la Recherche Robocop ANR-19-CE19-0026-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Daoudi.

Ethics declarations

Conflict of interest

SM is an employee from Collin Orl Ltd. Other authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoudi, H., Torres, R., Mazalaigue, S. et al. Analysis of forces during robot-assisted and manual manipulations of mobile and fixed footplate in temporal bone specimens. Eur Arch Otorhinolaryngol 278, 4269–4277 (2021). https://doi.org/10.1007/s00405-020-06553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-06553-z

Keywords

Navigation