Skip to main content
Log in

Identification of putative second genetic hits in schizophrenia carriers of high-risk copy number variants and resequencing in additional samples

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Copy number variants (CNVs) conferring risk of schizophrenia present incomplete penetrance, suggesting the existence of second genetic hits. Identification of second hits may help to find genes with rare variants of susceptibility to schizophrenia. The aim of this work was to search for second hits of moderate/high risk in schizophrenia carriers of risk CNVs and resequencing of the relevant genes in additional samples. To this end, ten patients with risk CNVs at cytobands 15q11.2, 15q11.2-13.1, 16p11.2, or 16p13.11, were subjected to whole-exome sequencing. Rare single nucleotide variants, defined as those absent from main public databases, were classified according to bioinformatic prediction of pathogenicity by CADD scores. The average number of rare predicted pathogenic variants per sample was 13.6 (SD 2.01). Two genes, BFAR and SYNJ1, presented rare predicted pathogenic variants in more than one sample. Follow-up resequencing of these genes in 432 additional cases and 432 controls identified a significant excess of rare predicted pathogenic variants in case samples at SYNJ1. Taking into account its function in clathrin-mediated synaptic vesicle endocytosis at presynaptic terminals, our results suggest an impairment of this process in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Malhotra D, Sebat J (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148:1223–1241. doi:10.1016/j.cell.2012.02.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL, Mahoney-Davies G, Legge SE, Moran JL, McCarroll SA, O’Donovan MC, Owen MJ, Kirov G (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204:108–114. doi:10.1192/bjp.bp.113.131052

    Article  PubMed  PubMed Central  Google Scholar 

  3. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543. doi:10.1126/science.1155174

    Article  PubMed  CAS  Google Scholar 

  4. Girirajan S, Eichler EE (2010) Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 19:R176–R187. doi:10.1093/hmg/ddq366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A et al (2010) A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 42:203–209. doi:10.1038/ng.534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589. doi:10.1038/ng.835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mitchell KJ, Porteous DJ (2011) Rethinking the genetic architecture of schizophrenia. Psychol Med 41:19–32. doi:10.1017/S003329171000070X

    Article  PubMed  CAS  Google Scholar 

  8. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A et al (2012) Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 367:1321–1331. doi:10.1056/NEJMoa1200395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kirov G, Rees E, Walters JT, Escott-Price V, Georgieva L, Richards AL et al (2013) The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry 75:378–385. doi:10.1016/j.biopsych.2013.07.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM et al (2012) Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 91:303–312. doi:10.1016/j.ajhg.2012.06.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190. doi:10.1038/nature12975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M et al (2016) Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci 19:1433–1441. doi:10.1038/nn.4402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al (2011) Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 43:864–868. doi:10.1038/ng.902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y et al (2014) De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 19:652–658. doi:10.1038/mp.2014.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. doi:10.1038/nature12929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Egawa J, Hoya S, Watanabe Y, Nunokawa A, Shibuya M, Ikeda M et al (2016) Rare UNC13B variations and risk of schizophrenia: whole-exome sequencing in a multiplex family and follow-up resequencing and a case-control study. Am J Med Genet B Neuropsychiatr Genet 171:797–805. doi:10.1002/ajmg.b.32444

    Article  PubMed  CAS  Google Scholar 

  17. Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S et al (2013) Support for the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 70:582–590. doi:10.1001/jamapsychiatry.2013.1195

    Article  PubMed  CAS  Google Scholar 

  18. Tiwari AK, Need AC, Lohoff FW, Zai CC, Chowdhury NI, Müller DJ et al (2014) Exome sequence analysis of Finnish patients with clozapine-induced agranulocytosis. Mol Psychiatry 19:403–405. doi:10.1038/mp.2013.74

    Article  PubMed  CAS  Google Scholar 

  19. Balan S, Iwayama Y, Toyota T, Toyoshima M, Maekawa M, Yoshikawa T (2014) 22q11.2 deletion carriers and schizophrenia-associated novel variants. Br J Psychiatry 204:398–399. doi:10.1192/bjp.bp.113.138420

    Article  PubMed  CAS  Google Scholar 

  20. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315. doi:10.1038/ng.2892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Carrera N, Arrojo M, Sanjuán J, Ramos-Ríos R, Paz E et al (2012) Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol Psychiatry 71:169–177. doi:10.1016/j.biopsych.2011.09.032

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez-Lopez J, Carrera N, Arrojo M, Amigo J, Sobrino B, Páramo M et al (2015) An efficient screening method for simultaneous detection of recurrent copy number variants associated with psychiatric disorders. Clin Chim Acta 445:34–40. doi:10.1016/j.cca.2015.03.013

    Article  PubMed  CAS  Google Scholar 

  23. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi:10.1038/ng.806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1-33. doi:10.1002/0471250953.bi1110s43

    Article  PubMed  Google Scholar 

  26. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017

    Article  PubMed  CAS  Google Scholar 

  27. Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM et al (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493:216–220. doi:10.1038/nature11690

    Article  PubMed  CAS  Google Scholar 

  28. The Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. doi:10.1038/nature09534

    Article  CAS  Google Scholar 

  29. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S et al (2012) A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28:2747–2754. doi:10.1093/bioinformatics/bts526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST, Working Group of the American College of Medical Genetics Laboratory Quality Assurance Committee (2011) American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 13:680–685. doi:10.1097/GIM.0b013e3182217a3a

    Article  PubMed  Google Scholar 

  31. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.1093/nar/gkq603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. MacArthur DG, North KN (2004) A gene for speed? The evolution and function of alpha-actinin-3. BioEssays 26:786–795

    Article  PubMed  CAS  Google Scholar 

  33. Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K et al (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    Article  PubMed  CAS  Google Scholar 

  34. Kononenko NL, Haucke V (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85:484–496. doi:10.1016/j.neuron.2014.12.016

    Article  PubMed  CAS  Google Scholar 

  35. Schubert KO, Föcking M, Prehn JH, Cotter DR (2012) Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatr 17:669–681. doi:10.1038/mp.2011.123

    Article  CAS  Google Scholar 

  36. Gong LW, De Camilli P (2008) Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA 105:17561–17566. doi:10.1073/pnas.0809221105

    Article  PubMed  Google Scholar 

  37. Krauss M, Haucke V (2007) Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8:241–246. doi:10.1038/sj.embor.7400919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Quadri M, Fang M, Picillo M, Olgiati S, Breedveld GJ, Graafland J et al (2013) Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 34:1208–1215. doi:10.1002/humu.22373

    Article  PubMed  CAS  Google Scholar 

  39. Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H et al (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34:1200–1207. doi:10.1002/humu.22372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Olgiati S, De Rosa A, Quadri M, Criscuolo C, Breedveld GJ, Picillo M et al (2014) PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family. Neurogenetics 15:183–188. doi:10.1007/s10048-014-0406-0

    Article  PubMed  CAS  Google Scholar 

  41. Roth W, Kermer P, Krajewska M, Welsh K, Davis S, Krajewski S et al (2003) Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. Cell Death Differ 10:1178–1187. doi:10.1038/sj.cdd.4401287

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Xu Q, Krajewski S, Krajewska M, Xie Z, Fuess S et al (2000) BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 97:2597–2602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant CP11/00163 from Instituto de Salud Carlos III, cofounded by FEDER; to JC, by agreement between SERGAS and Fundación Pública Galega de Medicina Xenómica, and by the Innopharma project (USC). The founders had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The genotyping service was carried out at CEGEN-PRB2-ISCIII; it is supported by Grant PT13/0001, ISCIII-SGEFI/FEDER. The authors would like to thank Centro de Supercomputación de Galicia (CESGA) for the use of their computing facilities and the NHLBI GO Exome Sequencing Project and its ongoing studies which produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926), and the Heart GO Sequencing Project (HL-103010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Costas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

406_2017_799_MOESM1_ESM.pdf

Supplementary Figure 1. Schematic representation of the study. Each color represents the different steps carried out in the study. Circles represent the subset of samples of the initial cohort used in each step, hexagons represent the specific assay, and rectangles represent the objective pursued in each step of the study (PDF 155 kb)

406_2017_799_MOESM2_ESM.xlsx

Supplementary Table 1. Main clinical characteristics and genetic findings of the ten schizophrenic CNV carriers (XLSX 15 kb)

Supplementary Table 2. Putative second hit SNVs identified in the present study (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-López, J., Sobrino, B., Amigo, J. et al. Identification of putative second genetic hits in schizophrenia carriers of high-risk copy number variants and resequencing in additional samples. Eur Arch Psychiatry Clin Neurosci 268, 585–592 (2018). https://doi.org/10.1007/s00406-017-0799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0799-5

Keywords

Navigation