Skip to main content

Advertisement

Log in

Corticosteroids and Montelukast: Effects on Airway Epithelial and Human Umbilical Vein Endothelial Cells

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Our primary objective was to investigate the possible contribution of controller medications to asthmatic airway remodeling, by (1) comparing the apoptotic and necrotic effects of several corticosteroids and montelukast on cultured airway human bronchial surface epithelial (16HBE) and submucosal (Calu3) cells; (2) measuring epithelial shedding potential and desmosome length in response to a cytokine challenge, with or without co-administered corticosteroids; and (3) studying corticosteroids and montelukast effects on inter-cellular adhesion molecule (ICAM) expression in both 16HBE and human umbilical vein endothelial cells (HUVEC). For this purpose, apoptosis, necrosis, and ICAM expression were quantified by flow cytometry, with 16HBE cells sensitive to both the apoptotic and necrotic effects of dexamethasone and montelukast; Calu3 cells sensitive only to budesonide. Transmission electron microscopy revealed decreased desmosome length in the presence of cytokines (TNF-α and INF-γ), with corticosteroids counteracting this reduction. Dexamethasone, beclomethasone, and montelukast decreased versus increased ICAM-1 expression in airway epithelial cells and HUVEC, respectively. For conclusions, bronchial surface epithelial and submucosal cells exhibit a different sensitivity profile toward dexamethasone, budesonide, and montelukast, with corticosteroids preventing cytokineinduced desmosomal damage in 16HBE cells. The studied drugs led to increased ICAM-1 expression in endothelium, potentially facilitating inflammatory cell migration into lung tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guidelines for the diagnosis and management of asthma [Internet database]. NIH, Department of Health and Human Services. 2007. http://www.nhlbi.nih.gov/guidelines/asthma/

  2. Larj MJ, Bleecker ER (2004) Therapeutic responses in asthma and COPD corticosteroids. Chest 126(2 Suppl):138S–149S (discussion 159S-161S)

    Article  CAS  PubMed  Google Scholar 

  3. Vignola AM, Chiappara G, Siena L, Bruno A, Gagliardo R, Merendino AM et al (2001) Proliferation and activation of bronchial epithelial cells in corticosteroid-dependent asthma. J Allergy Clin Immunol 108(5):738–746

    Article  CAS  PubMed  Google Scholar 

  4. Shiba K, Kasahara K, Nakajima H, Adachi M (2002) Structural changes of the airway wall impair respiratory function, even in mild asthma. Chest 122(5):1622–1626

    Article  PubMed  Google Scholar 

  5. Baroody FM, Cheng CC, Moylan B, de Tineo M, Haney L, Reed KD et al (2001) Absence of nasal mucosal atrophy with fluticasone aqueous nasal spray. Arch Otolaryngol Head Neck Surg 127(2):193–199

    CAS  PubMed  Google Scholar 

  6. White SR, Dorscheid DR (2002) Corticosteroid-induced apoptosis of airway epithelium: a potential mechanism for chronic airway epithelial damage in asthma. Chest 122(6 Suppl):278S–284S

    Article  CAS  PubMed  Google Scholar 

  7. Dorscheid DR, Low E, Conforti A, Shifrin S, Sperling AI, White SR (2003) Corticosteroid-induced apoptosis in mouse airway epithelium: effect in normal airways and after allergen-induced airway inflammation. J Allergy Clin Immunol 111(2):360–366

    Article  CAS  PubMed  Google Scholar 

  8. Pavlovic D, Viires N, Zedda C, Fournier M, Aubier M (1998) Effects of corticosteroids on epithelial structure and smooth muscle function of rat trachea. Eur Respir J 11(3):575–582

    CAS  PubMed  Google Scholar 

  9. Allen DB, Bielory L, Derendorf H, Dluhy R, Colice GL, Szefler SJ (2003) Inhaled corticosteroids: past lessons and future issues. J Allergy Clin Immunol 112(3 Suppl):S1–S40

    Article  CAS  PubMed  Google Scholar 

  10. Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167(10):1360–1368

    Article  PubMed  Google Scholar 

  11. Masuda T, Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D et al (2003) Mast cells play a partial role in allergen-induced subepithelial fibrosis in a murine model of allergic asthma. Clin Exp Allergy 33(5):705–713

    Article  CAS  PubMed  Google Scholar 

  12. Vignola AM, Gagliardo R, Siena A, Chiappara G, Bonsignore MR, Bousquet J et al (2001) Airway remodeling in the pathogenesis of asthma. Curr Allergy Asthma Rep 1(2):108–115

    Article  CAS  PubMed  Google Scholar 

  13. Joos S, Miksch A, Szecsenyi J, Wieseler B, Grouven U, Kaiser T et al (2008) Montelukast as add-on therapy to inhaled corticosteroids in the treatment of mild to moderate asthma: a systematic review. Thorax 63(5):453–462

    Article  CAS  PubMed  Google Scholar 

  14. Henderson WR Jr, Tang LO, Chu SJ, Tsao SM, Chiang GK, Jones F et al (2002) A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med 165(1):108–116

    PubMed  Google Scholar 

  15. Montefort S, Holgate ST, Howarth PH (1993) Leucocyte-endothelial adhesion molecules and their role in bronchial asthma and allergic rhinitis. Eur Respir J 6(7):1044–1054

    CAS  PubMed  Google Scholar 

  16. Ohkawara Y, Yamauchi K, Maruyama N, Hoshi H, Ohno I, Honma M et al (1995) In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: in vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am J Respir Cell Mol Biol 12(1):4–12

    CAS  PubMed  Google Scholar 

  17. Hopfer U, Jacobberger JW, Gruenert DC, Eckert RL, Jat PS, Whitsett JA (1996) Immortalization of epithelial cells. Am J Physiol 270(1 Pt 1):C1–C11

    CAS  PubMed  Google Scholar 

  18. Cozens AL, Yezzi MJ, Yamaya M, Steiger D, Wagner JA, Garber SS et al (1992) A transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell Dev Biol 28A(11–12):735–744

    Article  CAS  PubMed  Google Scholar 

  19. Ross DD, Joneckis CC, Ordonez JV, Sisk AM, Wu RK, Hamburger AWNRE et al (1989) Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res 49(14):3776–3782

    CAS  PubMed  Google Scholar 

  20. Bentley AM, Hamid Q, Robinson DS, Schotman E, Meng Q, Assoufi B et al (1996) Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 153(2):551–556

    CAS  PubMed  Google Scholar 

  21. Druilhe A, Letuve S, Pretolani M (2003) Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis 8(5):481–495

    Article  CAS  PubMed  Google Scholar 

  22. Dorscheid DR, Wojcik KR, Sun S, Marroquin B, White SR (2001) Apoptosis of airway epithelial cells induced by corticosteroids. Am J Respir Crit Care Med 164(10 Pt 1):1939–1947

    CAS  PubMed  Google Scholar 

  23. Spinozzi F, Russano AM, Piattoni S, Agea E, Bistoni O, de Benedictis D et al (2004) Biological effects of montelukast, a cysteinyl-leukotriene receptor-antagonist, on T lymphocytes. Clin Exp Allergy 34(12):1876–1882

    Article  CAS  PubMed  Google Scholar 

  24. Abadoglu O, Mungan D, Aksu O, Erekul S, Misirligil Z (2005) The effect of montelukast on eosinophil apoptosis: induced sputum findings of patients with mild persistent asthma. Allergol Immunopathol (Madr) 33(2):105–111

    Article  CAS  Google Scholar 

  25. Muz MH, Deveci F, Bulut Y, Ilhan N, Yekeler H, Turgut T (2006) The effects of low dose leukotriene receptor antagonist therapy on airway remodeling and cysteinyl leukotriene expression in a mouse asthma model. Exp Mol Med 38(2):109–118

    CAS  PubMed  Google Scholar 

  26. Leick-Maldonado EA, Kay FU, Leonhardt MC, Kasahara DI, Prado CM, Fernandes FT et al (2004) Comparison of glucocorticoid and cysteinyl leukotriene receptor antagonist treatments in an experimental model of chronic airway inflammation in guinea-pigs. Clin Exp Allergy 34(1):145–152

    Article  CAS  PubMed  Google Scholar 

  27. Muraki M, Imbe S, Sato R, Ikeda Y, Yamagata S, Iwanaga T et al (2009) Inhaled montelukast inhibits cysteinyl-leukotriene-induced bronchoconstriction in ovalbumin-sensitized guinea-pigs: the potential as a new asthma medication. Int Immunopharmacol 9(11):1337–1341

    Article  CAS  PubMed  Google Scholar 

  28. Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI (1992) Cytokines in symptomatic asthma airways. J Allergy Clin Immunol 89(5):958–967

    Article  CAS  PubMed  Google Scholar 

  29. Kampf C, Relova AJ, Sandler S, Roomans GM (1999) Effects of TNF-alpha, IFN-gamma and IL-beta on normal human bronchial epithelial cells. Eur Respir J 14(1):84–91

    Article  CAS  PubMed  Google Scholar 

  30. Carayol N, Campbell A, Vachier I, Mainprice B, Bousquet J, Godard P et al (2002) Modulation of cadherin and catenins expression by tumor necrosis factor-alpha and dexamethasone in human bronchial epithelial cells. Am J Respir Cell Mol Biol 26(3):341–347

    CAS  PubMed  Google Scholar 

  31. Carayol N, Vachier I, Campbell A, Crampette L, Bousquet J, Godard P et al (2002) Regulation of E-cadherin expression by dexamethasone and tumour necrosis factor-alpha in nasal epithelium. Eur Respir J 20(6):1430–1436

    Article  CAS  PubMed  Google Scholar 

  32. Vignola AM, Campbell AM, Chanez P, Bousquet J, Paul-Lacoste P, Michel FB et al (1993) HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 148(3):689–694

    CAS  PubMed  Google Scholar 

  33. van de Stolpe A, Caldenhoven E, Raaijmakers JA, van der Saag PT, Koenderman L (1993) Glucocorticoid-mediated repression of intercellular adhesion molecule-1 expression in human monocytic and bronchial epithelial cell lines. Am J Respir Cell Mol Biol 8(3):340–347

    PubMed  Google Scholar 

  34. Fregonese L, Silvestri M, Sabatini F, Rossi GA (2002) Cysteinyl leukotrienes induce human eosinophil locomotion and adhesion molecule expression via a CysLT1 receptor-mediated mechanism. Clin Exp Allergy 32(5):745–750

    Article  CAS  PubMed  Google Scholar 

  35. Stelmach I, Jerzynska J, Kuna P (2002) A randomized, double-blind trial of the effect of treatment with montelukast on bronchial hyperresponsiveness and serum eosinophilic cationic protein (ECP), soluble interleukin 2 receptor (sIL-2R), IL-4, and soluble intercellular adhesion molecule 1 (sICAM-1) in children with asthma. J Allergy Clin Immunol 109(2):257–263

    Article  CAS  PubMed  Google Scholar 

  36. Polat A, Nayci A, Polat G, Aksoyek S (2002) Dexamethasone down-regulates endothelial expression of intercellular adhesion molecule and impairs the healing of bowel anastomoses. Eur J Surg 168(8–9):500–506

    Article  CAS  PubMed  Google Scholar 

  37. Sun W, Watanabe Y, Wang ZQ (2006) Expression and significance of ICAM-1 and its counter receptors LFA-1 and Mac-1 in experimental acute pancreatitis of rats. World J Gastroenterol 12(31):5005–5009

    CAS  PubMed  Google Scholar 

  38. Lorenzon P, Vecile E, Nardon E, Ferrero E, Harlan JM, Tedesco F et al (1998) Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. J Cell Biol 142(5):1381–1391

    Article  CAS  PubMed  Google Scholar 

  39. Kevil CG, Pruitt H, Kavanagh TJ, Wilkerson J, Farin F, Moellering D et al (2004) Regulation of endothelial glutathione by ICAM-1: implications for inflammation. FASEB J 18(11):1321–1323

    CAS  PubMed  Google Scholar 

  40. Mori M, Takaku Y, Kobayashi T, Hagiwara K, Kanazawa M, Nagata M (2009) Eosinophil superoxide anion generation induced by adhesion molecules and leukotriene D4. Int Arch Allergy Immunol 149(Suppl 1):31–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical assistance of Leif Ljung is gratefully acknowledged. This study was financially supported by the Swedish Asthma Allergy Association, the Swedish Heart–Lung Foundation, and the Swedish Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Servetnyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, K., Shebani, E.B., Makeeva, N. et al. Corticosteroids and Montelukast: Effects on Airway Epithelial and Human Umbilical Vein Endothelial Cells. Lung 188, 209–216 (2010). https://doi.org/10.1007/s00408-010-9227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-010-9227-6

Keywords

Navigation