Skip to main content

Advertisement

Log in

An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zircons from 14 compositionally variable granitic rocks were examined in detail using CL image-guided micro-analysis to unravel the complex magmatic history above the southward retreating Hellenic subduction zone system in the Aegean Sea. Previously published U–Pb ages document an episodic crystallisation history from 17 to 11 Ma, with peraluminous (S-type) granitic rocks systematically older than closely associated metaluminous (I-type) granitic rocks. Zircon O- and Hf isotopic data, combined with trace element compositions, are highly variable within and between individual samples, indicative of open-system behaviour involving mantle-derived melts and evolved supracrustal sources. Pronounced compositional and thermal fluctuations highlight the role of magma mixing and mingling, in accord with field observations, and incremental emplacement of distinct melt batches coupled with variable degrees of crustal assimilation. In the course of partial fusion, more fertile supracrustal sources dominated in the earlier stages of Aegean Miocene magmatism, consistent with systematically older crystallisation ages of peraluminous granitic rocks. Differences between zircon saturation and crystallisation temperatures (deduced from zircon Ti concentrations), along with multimodal crystallisation age spectra for individual plutons, highlight the complex and highly variable physico-compositional and thermal evolution of silicic magma systems. The transfer of heat and juvenile melts from the mantle varied probably in response to episodic rollback of the subducting lithospheric slab, as suggested by punctuated crystallisation age spectra within and among individual granitic plutons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altherr R, Siebel W (2002) I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib Miner Petrol 143(4):397–415

    Article  Google Scholar 

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Hohndorf A (1982) A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geol Jahrb E23:97–164

    Google Scholar 

  • Altherr R, Henjes-Kunst F, Matthews A, Friedrichsen H, Hansen BT (1988) O-Sr isotopic variations in Miocene granitoids from the Aegean—evidence for an origin by combined assimilation and fractional crystallization. Contrib Miner Petrol 100(4):528–541

    Article  Google Scholar 

  • Amelin YV (1998) Geochronology of the Jack hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem Geol 146(1–2):25–38

    Article  Google Scholar 

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203(3–4):937–955

    Article  Google Scholar 

  • Avigad D, Garfunkel Z (1989) Low angle faults underneath and above a blueschist belt—Tinos Island, Cyclades, Greece. Terra Nova 1:182–187

    Article  Google Scholar 

  • Avigad D, Garfunkel Z (1991) Uplift and exhumation of high-pressure metamorphic terrains—the example of the cycladic blueschist belt (Aegean Sea). Tectonophysics 188(3–4):357–372. doi:10.1016/0040-1951(91)90464-4

    Google Scholar 

  • Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recylced zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233:277–293

    Article  Google Scholar 

  • Ballard JR, Palin JM, Williams IR, Campbell IH (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit in northern Chile by ELA-ICPMS. Geology 29:383–386

    Article  Google Scholar 

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Miner Petrol 144:347–364

    Article  Google Scholar 

  • Bolhar R, Whitehouse MJ, Weaver SD, Cole JW (2006) Geochemical variability of zircons from the Cretaceous Separation Point batholith (New Zealand)—Clues to sources and igneous processes, vol., Melbourne, Australia, pp A57–A57

  • Bolhar R, Weaver SD, Palin JM, Cole JW, Paterson LA (2008a) Systematics of zircon crystallisation in the Cretaceous Separation Point Suite, New Zealand, using U/Pb isotopes, REE and Ti geothermometry. Contrib Miner Petrol 156(2):133–160

    Article  Google Scholar 

  • Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2008b) Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett 268(3–4):312–324

    Article  Google Scholar 

  • Bolhar R, Ring U, Allen CM (2010) An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 1: geochronology. Contrib Miner Petrol 160(5):719–742

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Boynton WV (1984) Geochemistry of rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brichau S, Ring U, Ketcham RA, Carter A, Stockli D, Brunel M (2006) Constraining the long-terrn evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology. Earth Planet Sci Lett 241(1–2):293–306

    Article  Google Scholar 

  • Brichau P, Ring U, Carter A, Patrick M, Bolhar R, Stockli D, Brunel M (2007) Extensional faulting on Tinos island, Aegean sea, Greece: How many detachments? Tectonics 26(4). doi:10.1029/2006TC001969

  • Brichau S, Ring U, Carter A, Bolhar R, Monie P, Stockli D, Brunel M (2008) Timing, slip rate, displacement and cooling history of the Mykonos detachment footwall, Cyclades, Greece, and implications for the opening of the Aegean Sea basin. J Geol Soc 165:263–277

    Article  Google Scholar 

  • Brichau S, Thomson S, Ring U (2010) Thermochronometric constraints on the tectonic evolution of the Serifos detachment, Aegean Sea, Greece. Int J Earth Sci 99(2):379–393

    Article  Google Scholar 

  • Brun JP, Faccenna C (2008) Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett 272(1–2):1–7

    Article  Google Scholar 

  • Buick IS (1991) The late Alpine evolution of an extensional shear zone, Naxos, Greece. J Geol Soc Lond 148:93–103

    Article  Google Scholar 

  • Buick I, Holland TJB (1989) The P-T-t pths associated with crustal extension, Naxos, Cyclades. In: Daly JS, Cliff RA, Yardley BWD (eds) Geological Society of London, Special Publication, vol 40, pp 365–371

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48(4):489–499

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Calsteren PWV, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • de Boorder H, Spakman W, White SH et al (1998) Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet Sci Lett 164(3–4):569–575. doi:10.1016/S0012-821X(98)00247-7

  • De Paolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet Sci Lett 53(2):189–202

    Article  Google Scholar 

  • Dürr S, Altherr R, Keller J, Okrusch M, Seidel E (1978) The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In: Closs H, Roeder D, Schmidt KE (eds) Alps, Apennines, Hellenides, vol. Schweizerbart, Stuttgart, pp 537–564

    Google Scholar 

  • Ewart A, Collerson KD, Regelous M, Wendt JI, Niu YL (1998) Geochemical evolution within the Tonga-Kermadec Lau arc back-arc systems: the role of varying mantle wedge composition in space and time. J Petrol 39(3):331–368

    Article  Google Scholar 

  • Flood RH, Shaw SE (1975) Cordierite-bearing granite suite from New England Batholith, NSW, Australia. Contrib Miner Petrol 52(3):157–164

    Article  Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Miner Petrol 156(2):197–215

    Article  Google Scholar 

  • Fytikas M, Innocenti F, Manetti P, Mazuoli R, Peccerillo A, Villari L (1984) Tertiary to quaternary evolution of volcanism in the Aegean region. Geological Society of London Special Publication vol. 17, pp 687–700

  • Gessner K, Gallardo L, Markwitz V, Ring U, Thomson SN (2012) Transtensional shearing and metamorphic core complexes in continental arcs: denudation of the menderes Massif, Western Turkey. Gondwana Res (in press)

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226(3–4):144–162

    Article  Google Scholar 

  • Henjes-Kunst F, Altherr R, Kreuzer H, Hansen BT (1988) Disturbed U-Th-Pb Systematics of Young Zircons and Uranothorites—the Case of the Miocene Aegean Granitoids (Greece). Chem Geol 73(2):125–145

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98(4):455–489

    Article  Google Scholar 

  • Iglseder C, Grasemann B, Schneider DA, Petrakakis K, Miller C, Klötzli US, Thöni M, Zámolyi A, Rambousek C (2009) I and S-type plutonism on Serifos (W-Cyclades, Greece). Tectonophysics 473:69–83

    Article  Google Scholar 

  • Jacobshagen V (1986) Geologie von Griechenland, vol. Gebrüder Bornträger, Berlin, p 363

    Google Scholar 

  • Jolivet L, Brun JP (2001) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci (Geol Rundsch) 99(1):109–138

    Article  Google Scholar 

  • Keay S, Lister G, Buick I (2001) The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342(3–4):275–312

    Article  Google Scholar 

  • Kemp AIS, Whitehouse MJ, Hawkesworth CJ, Alarcon MK (2005) A zircon U-Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification and magma differentiation processes. Contrib Miner Petrol 150(2):230–249. doi:10.1007/s00410-005-0019-6

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583

    Article  Google Scholar 

  • Kemp AIS, Shimura T, Hawkesworth CJ, EIMF (2007a) Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology 35(9):807–810

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007b) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315(5814):980–983

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL, EIMF (2009a) Isotopic evidence for rapid continental growth in an extensional accretionary orogen. The Tasmanides, eastern Australia. Earth Planet Sci Lett 35(9):807–810

    Google Scholar 

  • Kemp AIS, Foster G, Schersten A, Whitehouse MJ, Darling J, Storey C (2009b) Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chem Geol 261:244–260

    Article  Google Scholar 

  • Kincaid C, Griffiths RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425(6953):58–62

    Article  Google Scholar 

  • Kinny PD, Maas R (2003) Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Mineralogical Society America, Washington, pp 327–341

    Google Scholar 

  • Kumerics C, Ring U, Brichau S, Glodny J, Monie P (2005) The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece. J Geol Soc 162:701–721

    Article  Google Scholar 

  • Langosch A, Seidel E, Stosch HG, Okrusch M (2000) Intrusive rocks in the ophiolitic melange of Crete—Witnesses to a Late Cretaceous thermal event of enigmatic geological position. Contrib Miner Petrol 139:339–355

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) Hellenic Arc and Trench system—key to the neotectonic evolution of the Eastern Mediterranean area. Tectonophysics 60(1–2):1–42

    Article  Google Scholar 

  • Lee J, Lister GS (1992) Late Miocene ductile extension and detachment faulting, Mykonos, Greece. Geology 20:121–124

    Article  Google Scholar 

  • Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12:21–25

    Article  Google Scholar 

  • McInnes BIA, Cameron EM (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment—mantle wedge samples from the Tabar-Lihir Tanga-Feni Arc, Papua-New-Guinea. Earth Planet Sci Lett 122(1–2):125–141

    Article  Google Scholar 

  • Meulenkamp JE, Wortel MJR, Vanwamel WA, Spakman W, Strating EH (1988) On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 146(1–4):203–215

    Article  Google Scholar 

  • Miller JS, Wooden JL (2004) Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic field, California. J Petrol 45(11):2155–2170

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geoth Res 167(1–4):282–299

    Article  Google Scholar 

  • Nemchin AA, Pidgeon RT, Whitehouse MJ (2006) Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet Sci Lett 244(1–2):218–233

    Article  Google Scholar 

  • Pe-Piper G (2000) Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece. Eur J Miner 12(4):859–875

    Google Scholar 

  • Pe-piper G, Piper DJW (1989) Spatial and temporal variation in Late Cenozoic back-arc volcanic-rocks, Aegean Sea Region. Tectonophysics 169(1–3):113–134

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2001) Late Cenozoic, post-collisional Aegean igneous rocks: Nd, Pb and Sr isotopic constraints on petrogenetic and tectonic models. Geol Mag 138(6):653–668

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2006) Unique features of the Cenozoic igneous rocks of Greece. In: Dilek Y, Pavlides S (eds) Postcollisional tectonics and magmatism in the Mediterranean region and Asia, vol 409. Geological Soc Amer Inc, Boulder, pp 259–282

    Chapter  Google Scholar 

  • Pe-Piper G, Piper DJW (2007) Late Miocene igneous rocks of Samos: the role of tectonism in petrogenesis in the southeastern Aegean. In: Taymaz T, Yilmaz Y, Dilek Y (eds) Geodynamics of the Aegean and Anatolia, vol 291. Geological Soc Amer Inc, Boulder, pp 75–97

    Google Scholar 

  • Pe-Piper G, Piper DJW, Matarangas D (2002) Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos 60(1–2):47–66. doi:10.1016/S0024-4937(01)00068-8

    Article  Google Scholar 

  • Ring U, Layer PW (2003) High-pressure metamorphism in the Aegean, eastern Mediterranean: underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone. Tectonics 22(3). doi:10.1029/2001TC001350

  • Ring U, Gessner K, Gungor T, Passchier CW (1999) The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean—do they really correlate? J Geol Soc 156:3–6

    Article  Google Scholar 

  • Ring U, Glodny J, Will T, Thomson SN (2010) The retreating hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annu Rev Earth Planet Sci 38:45–76

    Article  Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Paleogeographic and paleotectonic evolution of eastern Mediterranean Neotethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:289–343

    Article  Google Scholar 

  • Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293(5530):683–687

    Article  Google Scholar 

  • Seward D, Vanderhaeghe O, Siebenaller L et al (2009) Cenozoic tectonic evolution of Naxos Island through a multi-faceted approach of fission-track analysis. In: Ring U, Wernicke B (eds) Penrose conference on extending a continent: architecture, rheology and heat budget, vol 321. Geological Society Special Publication, Naxos, Greece, pp 179–196. doi:10.1144/SP321.9

  • Shaked Y, Avigad D, Garfunkel Z (2000) Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geol Mag 137:367–380

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2004) Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallisation (EC-E’RA chi FC). J Petrol 45(12):2459–2480

    Article  Google Scholar 

  • Thomson SN, Ring U, Brichau S, Glodny J, Will TM (2009) Timing and nature of formation of the Ios metamorphic core complex, southern Cyclades, Greece. In: Ring U, Wernicke B (eds) Extending a continent: architecture, rheology and heat budget, vol 321. Geological Soc Publishing House, Bath, pp 139–167

    Google Scholar 

  • Tomaschek F, Kennedy A, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—Recrystallization and mobilisation during high pressure metamorphism. J Petrol 44:1977–2002

    Article  Google Scholar 

  • Turnbull R, Weaver S, Tulloch A, Cole J, Handler M, Ireland T (2010) Field and geochemical constraints on mafic-felsic interactions, and processes in high-level arc magma chambers: an example from the Halfmoon Pluton, New Zealand. J Petrol 51(7):1477–1505

    Article  Google Scholar 

  • Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen-isotope geochemistry of zircon. Earth Planet Sci Lett 126(4):187–206

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Miner Petrol 150(6):561–580

    Article  Google Scholar 

  • van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel R (2005) Nappe stacking resulting from continental lithosphere below subduction of oceanic and Greece. Geology 33(4):325–328

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63(3–4):533–556

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Gehrels GE et al (1996) Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379(6566):624–627. doi:10.1038/379624a0

    Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J et al (1999) Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168(1–2):79–99. doi:10.1016/S0012-821X(99)00047-3

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151(4):413–433

    Article  Google Scholar 

  • Weidmann M, Solounias N, Drake RE, Curtis GH (1984) Neogene stratigraphy of the eastern basin, Samos-Island, Greece. Geobios 17(4):477–490

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46(2):291–318. doi:10.1093/petrology/egh075

    Google Scholar 

  • Whitehouse MJ, Nemchin AA (2009) High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chem Geol 261:32–42

    Article  Google Scholar 

  • Whitehouse MJ, Kamber B, Moorbath S (1999) Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS, Fedo CM, Lepland A (2005) The importance of combined Pb and S isotope data from early Archaean rocks, southwest Greenland, for the interpretation of S-isotope signatures. Chem Geol 222:112–131

    Article  Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20(9–10):1273–1289

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli R, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28(1):9–39. doi:10.1111/j.1751-908X.2004.tb01041.x

    Article  Google Scholar 

  • Wijbrans JR, McDougall I (1988) Metamorphic evolution of the Attic Cycladic metamorphic belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6:571–594

    Article  Google Scholar 

  • Wijbrans JR, Schliestedt M, York D (1990) Single grain argon-laser probe dating of phengites from the blueschist to greenschist transition on Sifnos (Cyclades, Greece). Contrib Miner Petrol 104(5):582–593

    Article  Google Scholar 

  • Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29(2):183–195. doi:10.1111/j.1751-908X.2005.tb00891.x

    Article  Google Scholar 

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209(1–2):121–135

    Article  Google Scholar 

Download references

Acknowledgments

RB acknowledges financial support through a postdoctoral fellowship at the University of Canterbury (2005–2006). UR acknowledges funding through grant E5345 of the Brian Mason technical trust. TK acknowledges Australian Research Council grants DP0773029 and FT100100059. The NordSIMS facility is operated under an agreement between the joint Nordic research councils (NOS-N), the Geological Survey of Finland and the Swedish Museum of Natural History; this is Nordsim publication # 319. Two anonymous reviewers provided constructive criticism. Chris Ballhaus is thanked for his editorial input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bolhar.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5.58 mb)

Supplementary material 2 (XLS 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolhar, R., Ring, U., Kemp, A.I.S. et al. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry. Contrib Mineral Petrol 164, 915–933 (2012). https://doi.org/10.1007/s00410-012-0759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0759-z

Keywords

Navigation