Skip to main content

Advertisement

Log in

Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper–gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite–apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite–apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite–ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite–apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite–apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barton MD (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. Treat Geochem 13:515–541

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (–Cu–Au) systems: Implications for hydrothermal alteration and metals. Hydrotherm Iron Oxide Copp Gold Relat Depos Glob Perspect 1:43–60

    Google Scholar 

  • Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314. doi:http://www.nature.com/nmat/journal/v12/n4/abs/nmat3558.html#supplementary-information

  • Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72(6):1101–1130

    Article  Google Scholar 

  • Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55(1–4):139–158. doi:10.1016/S0024-4937(00)00043-8

    Article  Google Scholar 

  • Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56–81. doi:10.1016/j.earscirev.2014.11.005

    Article  Google Scholar 

  • Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9(14):1736–1750. doi:10.1039/b618790k

    Article  Google Scholar 

  • Chukhrov FV (1966) Present views on colloids in ore formation. Int Geol Rev 8(3):336–345. doi:10.1080/00206816609474290

    Article  Google Scholar 

  • Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147. doi:10.1016/j.precamres.2013.10.007

    Article  Google Scholar 

  • Creaser RA, Gray CM (1992) Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: a case study from the Middle Proterozoic of South Australia. Geochim Cosmochim Acta 56(7):2789–2795. doi:10.1016/0016-7037(92)90359-Q

    Article  Google Scholar 

  • Dare SS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner Depos 50(5):607–617. doi:10.1007/s00126-014-0560-1

    Article  Google Scholar 

  • Dumanska-Słowik M, Natkaniec-Nowak L, Wesełucha-Birczynska A, Gaweł A, Lankosz M, Wróbel P (2013) Agates from Morocco: gemological characteristics and proposed origin. Gems Gemol 49(3)

  • Dymkin AM, Sokolov GA (1961) Colloform seggregations of endogenous magnetite in the Kurzhunkul deposit. Geol Geofiz 1:77–85

    Google Scholar 

  • Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit, South Australia. In: Hedenquist JW et al. (eds) Economic Geology Special Publication, vol 16, pp 237–267

  • Götze J (2002) Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374(4):703–708. doi:10.1007/s00216-002-1461-1

    Article  Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper–gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105(3):641–654. doi:10.2113/gsecongeo.105.3.641

    Article  Google Scholar 

  • Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner Depos 36(8):799–806. doi:10.1007/s001260100209

    Article  Google Scholar 

  • Hauck SA (1990) Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits: an ore deposit model for Olympic Dam-type mineralization. US Geol Surv Bull 1932:4–39

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58(1):241–287

    Article  Google Scholar 

  • Huang Q-Y, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Apukhtina O, Kamenetsky M, Chambefort I, Hu Y, Ling M (2015) Neoproterozoic (820 Ma) mafic dykes at Olympic Dam, South Australia: links with the Gairdner Large Igneous Province. Precambrian Research

  • Jagodzinski EA (2014) The age of magmatic and hydrothermal zircon at Olympic Dam. In: AESC-Abstract-Proceedings Newcastle

  • Johnson JP, McCulloch MT (1995) Sources of mineralising fluids for the Olympic Dam Deposit (South Australia)—Sm–Nd isotopic constraints. Chem Geol 121(1–4):177–199

    Article  Google Scholar 

  • Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644. doi:10.1038/srep01644

    Article  Google Scholar 

  • Karathanasis AD (1999) Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci Soc Am J 63(4):830–838. doi:10.2136/sssaj1999.634830x

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology. doi:10.1130/g36650.1

    Google Scholar 

  • Maas R, Apukhtina OB, Kamenetsky VS, Ehrig K (2015) Olympic Dam Cu–U–Au deposit: 87Sr/86Sr in carbonate gangue documents long formation history. In: Proceedings Goldschmidt 2015, Prague:1957  

  • McPhie J, Kamenetsky VS, Chambefort I, Ehrig K, Green N (2011) Origin of the supergiant Olympic Dam Cu–U–Au–Ag deposit, South Australia: Was a sedimentary basin involved? Geology 39(8):795–798. doi:10.1130/g31952.1

    Article  Google Scholar 

  • Menard T, Lesher CM, Stowell HH, Price DP, Pickell JR, Onstott TC, Hulbert L (1996) Geology, genesis, and metamorphic history of the Namew Lake Ni–Cu deposit, Manitoba. Econ Geol 91(8):1394–1413. doi:10.2113/gsecongeo.91.8.1394

    Article  Google Scholar 

  • Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147

    Article  Google Scholar 

  • Molchan IS, Thompson GE, Lindsay R, Skeldon P, Likodimos V, Romanos GE, Falaras P, Adamova G, Iliev B, Schubert TJS (2014) Corrosion behaviour of mild steel in 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids for CO2 capture applications. RSC Adv 4(11):5300–5311. doi:10.1039/c3ra45872e

    Article  Google Scholar 

  • Nystroem JO, Henriquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89(4):820–839. doi:10.2113/gsecongeo.89.4.820

    Article  Google Scholar 

  • Parak T (1975) Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ Geol 70(7):1242–1258. doi:10.2113/gsecongeo.70.7.1242

    Article  Google Scholar 

  • Parak T (1984) On the magmatic origin of iron ores of the Kiruna type; discussion. Econ Geol 79(8):1945–1949. doi:10.2113/gsecongeo.79.8.1945

    Article  Google Scholar 

  • Pavlov NV (1961) Magnetite deposits of the Tungusska tectonic Depression on the SIberian Platform. Tr IGEM Akad Nauk SSSR 52

  • Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper–uranium–gold–silver deposit. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol Monograph 14. Australasian Institute of Mining and Metallurgy, Melbourne, pp 1009–1035

    Google Scholar 

  • Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems: evidence from the Sleeper deposit, Nevada. Geology 18(8):757–760. doi:10.1130/0091-7613(1990)018<0757:ctogas>2.3.co;2

    Article  Google Scholar 

  • Saunders JA (1994) Silica and gold textures in bonanza ores of the Sleeper Deposit, Humboldt County, Nevada; evidence for colloids and implications for epithermal ore-forming processes. Econ Geol 89(3):628–638. doi:10.2113/gsecongeo.89.3.628

    Article  Google Scholar 

  • Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174(2):424–430. doi:10.1016/S0022-4596(03)00294-9

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper–gold deposits: an Andean view. Miner Depos 38(7):787–812. doi:10.1007/s00126-003-0379-7

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Econ Geol 97(5):1101–1109. doi:10.2113/gsecongeo.97.5.1101

    Google Scholar 

  • Song X-Y, Qi H-W, Hu R-Z, Chen L-M, Yu S-Y, Zhang J-F (2013) Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from the Panzhihua intrusion, SW China. Geochem Geophys Geosyst 14(3):712–732. doi:10.1002/ggge.20068

    Article  Google Scholar 

  • Stevenson JS, Jeffery WG (1964) Colloform magnetite in a contact metasomatic iron deposit, Vancouver Island, British Columbia. Econ Geol 59(7):1298–1305. doi:10.2113/gsecongeo.59.7.1298

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345. doi:10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Treloar PJ, Colley H (1996) Variations in F and Cl contents in apatites from magnetite–apatite ores in northern Chile, and their ore-genetic implications. Miner Mag 60(399):285–302

    Article  Google Scholar 

  • Watson T, Taber S (1910) Nelsonite, a new rock type; its occurrence, association, and composition. Geol Soc Am Bull 21:787

    Google Scholar 

  • Wawryk C (1989) Strontium and rare earth element geochemistry of barite-fluorite mineralization at Olympic Dam, South Australia. B.Sc thesis, unpublished

  • Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24(12):1059–1062. doi:10.1130/0091-7613(1996)024<1059:sfanmf>2.3.co;2

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NH, Marschik R (2005) Iron oxide copper–gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary volume, Society of Economic Geologists, Denver, pp. 371–405

  • Williamson BJ, Wilkinson JJ, Luckham PF, Stanley CJ (2002) Formation of coagulated colloidal silica in high-temperature mineralizing fluids. Miner Mag 66(4):547–553. doi:10.1180/0026461026640048

    Article  Google Scholar 

  • Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32(2):105–108. doi:10.1130/g20171.1

    Article  Google Scholar 

  • Zhao J, McCulloch MT (1993) Sm–Nd mineral isochron ages of Late Proterozoic dyke swarms in Australia: evidence for two distinctive events of mafic magmatism and crustal extension. Chem Geol 109(1–4):341–354. doi:10.1016/0009-2541(93)90079-x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Jay Thompson, Paul Olin, and Sandrin Feig (University of Tasmania) for assistance with analytical work. Qiuyue Huang, Alex Cherry, and Richelle Pascual are thanked for discussions and support. Thoughtful comments by Adam Simon and an anonymous reviewer helped to improve clarity and presentation. This study was funded by BHP Billiton and the Australian Research Council (Linkage Grant “The supergiant Olympic Dam U-Cu-Au-REE ore deposit: towards a new genetic model”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga B. Apukhtina.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest, and no human or animal participants are involved or harmed in any way during the conduct of this research.

Additional information

Communicated by Chris Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Supplementary material 2 (PDF 9546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apukhtina, O.B., Kamenetsky, V.S., Ehrig, K. et al. Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia. Contrib Mineral Petrol 171, 2 (2016). https://doi.org/10.1007/s00410-015-1215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1215-7

Keywords

Navigation