Skip to main content
Log in

Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

An unusual occurrence of Pt-enriched pyroxenites in the Monts de Cristal igneous complex is characterized by unusually high ratios of Pt to other platinum-group elements (PGEs) and very low Cu and sulfide contents. Synchrotron X-ray fluorescence microscopy was used to identify over a hundred discrete grains of platinum minerals and relate their occurrence to textural associations in the host heteradcumulate orthopyroxenites. Element associations, backed up by FIB-SEM and PIXE probe observations, indicate that most of the Pt is associated with either As- or trace Cu–Ni-rich sulfides, or both. Some of the Pt–As grains can be identified as sperrylite, and most are likely to be Pt–Fe alloy. The relative abundances and volumes of Pt minerals to sulfide minerals are very large compared with typical magmatic sulfides. Almost all of the grains observed lie at or within a few tens of μm of cumulus orthopyroxene grain boundaries, and there is no significant difference between the populations of grains located inside or outside plagioclase oikocrysts. These oikocrysts are inferred to have crystallized either at the cumulus stage or very shortly thereafter, on the basis of their relationship to Ti enrichment in the margins of pyroxene grains not enclosed in oikocrysts. This relationship precludes a significant role of trapped intercumulus liquid in Pt deposition or mobilization and also allows a confident inference that Pt-rich and Pt–As-enriched phases precipitated directly from the magma at the cumulus stage. These observations lead to the conclusion that fractionation of Pt from other PGEs in this magmatic system is a consequence of a solubility limit for solid Pt metal and/or Pt arsenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen JCO, Rasmussen H, Nielsen TFD, Ronsbo JG (1998) The Triple Group and the Platinova gold and palladium reefs in the Skaergaard Intrusion—Stratigraphic and Petrographic Relations. Econ Geol 93:488–509

    Article  Google Scholar 

  • Andrews DRA, Brenan JM (2002) The solubility of ruthenium in sulfide liquid; implications for platinum group mineral stability and sulfide melt-silicate melt partitioning. Chem Geol 192:163–181

    Article  Google Scholar 

  • Ballhaus C, Stumpfl EF (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contrib Mineral Petrol 94:193–204

    Article  Google Scholar 

  • Barnes SJ, Fiorentini ML (2008) Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem Geol 257:44–58. doi:10.1016/j.chemgeo.2008.08.015

    Article  Google Scholar 

  • Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58. doi:10.1016/j.oregeorev.2011.08.004

    Article  Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents. Econ Geol 100th Anniv Vol:179–214

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550

    Article  Google Scholar 

  • Bird DK, Brooks CK, Gannicott RA, Turner PA (1991) A gold-bearing horizon in the Skaergaard Intrusion, East Greenland. Econ Geol 86:1083–1092

    Article  Google Scholar 

  • Borisov A, Palme H (1997) Experimental determination of the solubility of platinum in silicate melts. Geochim Cosmochim Acta 61:4349–4357

    Article  Google Scholar 

  • Borisov A, Palme H (2000) Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems. Am Mineral 85:1665–1673

    Article  Google Scholar 

  • Boudreau AE, Meurer WP (1999) Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile. Contrib Mineral Petrol 134:174–185

    Article  Google Scholar 

  • Boudreau AE, Mathez EA, McCallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld Complexes: evidence for transport of platinum group elements by Cl-rich fluids. J Petrol 27:967–986

    Article  Google Scholar 

  • Campbell IH (1968) The origin of hetradcumulate and adcumulate textures in the Jimberlana Norite. Geol Mag 105:378–383

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ, Barnes SJ (1983) A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. J Petrol 24:133–165

    Article  Google Scholar 

  • Canali AC (2014) Solubility of the Assemblage Pt–PtAs in Basalt with Implications for Pt–as complexing and as speciation. Univerity of Toronto, Toronto

    Google Scholar 

  • Canali AC, Brenan JM (2015) Solubility of the assemblage Pt–PtAs(melt) in basalt with implications for Pt–As complexing and As speciation. In: Geol Ass Canada - Mineral Ass Canada Annual Meeting 2015, Abstracts, p A34039

  • Edou-Minko A, Grandin G, Campiglio C (2002) Petrologie et geomorphologie dans la region de Kango, Gabon: un grand dyke ultramafique-mafique archeen. J Afr Earth Sci 32:899–918

    Article  Google Scholar 

  • Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction. J Petrol 49(9):1647–1665

    Article  Google Scholar 

  • Fiorentini ML, Beresford SW, Grguric B, Barnes SJ, Stone WE (2007) Atypical stratiform sulfide-poor platinum-group element mineralisation in the Agnew-Wiluna belt komatiites, Wiluna, Western Australia. Aust J Earth Sci 54:801–824

    Article  Google Scholar 

  • Fiorentini ML, Barnes SJ, Lesher CM, Heggie GJ, Keays RR, Burnham OM (2010) Platinum-group element geochemistry of mineralized and non-mineralized komatiites and basalts. Econ Geol 105:795–823

    Article  Google Scholar 

  • Fiorentini ML, Barnes SJ, Maier WD, Burnham OM, Heggie GJ (2011) Global variability in the platinum-group element contents of komatiites. J Petrol 52:83–112

    Article  Google Scholar 

  • Fonseca ROC, Campbell IH, O’Neill HSC, Allen CM (2009) Solubility of Pt in sulphide mattes: implications for the genesis of PGE-rich horizons in layered intrusions. Geochim Cosmochim Acta. doi:10.1016/j.gca.2009.06.038

    Google Scholar 

  • Fonseca ROC, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum KP (2012) New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim Cosmochim Acta 87:227

    Article  Google Scholar 

  • Godel B (2013) High-Resolution X-ray computed tomography and its application to ore deposits: from data acquisition to quantitative three-dimensional measurements with case studies from Ni–Cu–PGE Deposits. Econ Geol 108:2005–2019. doi:10.2113/econgeo.108.8.2005

    Article  Google Scholar 

  • Godel BM, Barnes SJ, Barnes S-J, Maier WD (2010) Platinum ore in 3D: insights from high-resolution X-ray computed tomography. Geology 38:1127–1130

    Article  Google Scholar 

  • Godel BM, Gonzalez-Alvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the Rosie nickel prospect, Duketon greenstone belt, Western Australia. Econ Geol 107:275–294

    Article  Google Scholar 

  • Godel BM, Barnes SJ, Gurer D, Austin P, Fiorentini ML (2013) Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms. Contrib Mineral Petrol 165:173–189. doi:10.1007/s00410-012-0804-y

    Article  Google Scholar 

  • Godel B, Rudashevsky NS, Nielsen TFD, Barnes SJ, Rudashevsky VN (2014) New constraints on the origin of the Skaergaard Intrusion Cu–Pd–Au mineralization: insights from high-resolution X-ray computed tomography. Lithos 190–191:27–36. doi:10.1016/j.lithos.2013.11.019

    Article  Google Scholar 

  • Hanley JJ (2007) The role of arsenic-rich melts and mineral phases in the development of high-grade Pt–Pd mineralization within komatiite-associated magmatic Ni–Cu sulfide horizons at Dundonald Beach South, Abitibi Subprovince, Ontario, Canada. Econ Geol 102(2):305–317

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Fonseca ROC, Nagel TJ (2013) Fractionation of platinum, palladium, nickel, and copper in sulfide-arsenide systems at magmatic temperature. Contrib Mineral Petrol 166(6):1725–1737. doi:10.1007/s00410-013-0951-9

    Article  Google Scholar 

  • Holwell DA, Keays RR (2014) The formation of low-volume, high-tenor magmatic PGE-Au sulfide mineralization in closed systems; evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard Intrusion, East Greenland. Econ Geol 109(2):387–406. doi:10.2113/econgeo.109.2.387

    Article  Google Scholar 

  • Karup-Moller S, Makovicky E, Barnes SJ (2008) The metal-rich portions of the phase system Cu–Fe–Pd–S at 1000 degrees C, 900 degrees C and 725 degrees C; implications for mineralization in the Skaergaard Intrusion. Mineral Mag 72(4):941–951. doi:10.1180/minmag.2008.072.4.941

    Article  Google Scholar 

  • Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits; evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Depos 45(3):241

    Article  Google Scholar 

  • Keays RR, Lightfoot PC, Hamlyn PR (2012) Sulfide saturation history of the stillwater complex, Montana: chemostratigraphic variation in platinum group elements. Mineral Depos 47(1–2):151–173

    Article  Google Scholar 

  • Kirkham R, Dunn P, Kuczewski A, Siddons D, Dodanwela R, Moorhead G, Ryan C, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson D, de Jonge M, Kusel M, McKinlay J (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing. Proc Aust Inst Phys 1234:240–243

    Google Scholar 

  • Kogiso T, Suzuki K, Suzuki T, Shinotsuka K, Uesugi A, Takeuchi A, Suzuki Y (2008) Detecting micrometer-scale platinum-group minerals in mantle peridotite with microbeam synchrotron radiation X-ray fluorescence analysis. Goeochem Geophys Geosyst 9:Q03018. doi:10.1029/2007GC001888

    Google Scholar 

  • Laird JS, Szymanski R, Ryan CG, Gonzalez-Alvarez I (2013) A labview based FPGA data acquisition with integrated stage and beam transport control. Nucl Instrum Methods Phys Res B 306:71–75. doi:10.1016/j.nimb.2012.12.045

    Article  Google Scholar 

  • Locmelis M, Barnes SJ, Pearson NJ, Fiorentini ML (2009) Anomalous sulfur-poor platinum-group element mineralization in komatiitic cumulates, Mount Clifford, Western Australia. Econ Geol 104:841–855

    Article  Google Scholar 

  • Lorand J-P, Luguet A, Alard O (2008) Platinum-group elements; a new set of key tracers for the Earth’s interior. Elements 4(4):247–252. doi:10.2113/gselements.4.4.247

    Article  Google Scholar 

  • Maier WD, Barnes SJ, Campbell IH, Fiorentini ML, Peltonen P, Barnes S-J, Smithies RH (2009) Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460:620–623. doi:10.1038/nature08205

    Article  Google Scholar 

  • Maier WD, Rasmussen B, Fletcher I, Godel B, Barnes SJ, Fisher L, Yang SH, Huhma H, Lahaye Y (2015) Petrogenesis of the ~2.77 Ga Monts de Cristal Complex, Gabon: evidence for direct precipitation of Pt-arsenides from basaltic magma. J Petrol. doi:10.1093/petrology/egv035

    Google Scholar 

  • Mathison CI (1987) Pyroxene oikocrysts in troctolitic cumulates; evidence for supercooled crystallisation and postcumulus modification. Contrib Mineral Petrol 97(2):228

    Article  Google Scholar 

  • McBirney AR, Noyes RM (1979) Crystallization and layering in the Skaergaard intrusion. J Petrol 20:487–554

    Article  Google Scholar 

  • Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289. doi:10.1016/j.gca.2013.10.002

    Article  Google Scholar 

  • Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4(4):253–258. doi:10.2113/gselements.4.4.253

    Article  Google Scholar 

  • Naldrett AJ, Lehmann J, Auge T (1989) Spinel non-stoichiometry and reactions between chromite and closely associated sulphides, with examples from ophiolite complexes. Inst Min Metall, London

    Google Scholar 

  • Nielsen TFD, Anderson JCO, Holness MB, Keiding JK, Rudashevsky NS, Rudashevsky VN, Salmonsen LP, Tegner C, Veksler IV (2015) The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. J Petrol 56:643–1676. doi:10.1093/petrology/egv049

    Article  Google Scholar 

  • Park J-W, Campbell IH (2013) Platinum alloy and sulfur saturation in an arc-related basalt to rhyolite suite; evidence from the Pual Ridge lavas, the eastern Manus Basin. Geochim Cosmochim Acta 101:76

    Article  Google Scholar 

  • Paterson D, de Jonge MD, Howard DL, Lewis W, McKinlay J, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2011) The X-ray fluorescence microscopy beamline at the australian synchrotron. Proc Aust Inst Phys 1365:219–222

    Google Scholar 

  • Pina R, Gervilla F, Barnes SJ, Ortega L, Lunar R (2015) Liquid immiscibility between arsenide and sulfide melts; evidence from a LA-ICP-MS study in magmatic deposits at Serrania de Ronda (Spain). Mineral Depos 50(3):265–279. doi:10.1007/s00126-014-0534-3

    Article  Google Scholar 

  • Prichard HM, Fisher PC, McDonald I, Knight RD, Black AP, Sharp DR, Williams JP (2013) The distribution of PGE and the role of arsenic as a collector of PGE in the Spotted Quoll nickel ore deposit in the Forrestania Greenstone Belt, Western Australia. Econ Geol 108:1903–1922

    Article  Google Scholar 

  • Ryan CG, Kirkham R, Hough RM, Moorhead G, Siddons DP, de Jonge MD, Paterson DJ, De Geronimo G, Howard DL, Cleverley JS (2010) Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl Instrum Methods Phys Res A 619:37–43

    Article  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Cleverley JS, Kuczewski A, Dunn PA, Jensen M, De Geronimo G, Howard DL, Godel B, Dyl KA, Fisher LA, Hough RM, Barnes SJ, Bland PA, Moorhead GF, James SA, Spiers KM, Falkenberg G, Boesenberg U, Wellenreuther G (2014a) The Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex samples Proc SPIE 8851. X-Ray Nanoimaging Instrum Methods 8851:88510Q. doi:10.1117/12.2027195

    Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, Kuczewski A, Howard DL, Dunn PA, Falkenberg GU, Boesenberg U, De Geronimo G, Fisher LA, Halfpenny A, Lintern MJ, Lombi E, Dyl KA, Jensen M, Moorhead GF, Cleverley JS, Hough RM, Godel B, Barnes SJ, James SA, Spiers KM, Alfeld M, Wellenreuther G, Vukmanovic Z, Borg S (2014b) Maia X-ray fluorescence imaging: Capturing detail in complex natural samples. J Phys Conf Ser 499:012002

    Article  Google Scholar 

  • Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal-enriched sulfosalt melt in magmatic sulfide systems. Geology 38(10):951–954

    Article  Google Scholar 

  • Wager LR, Brown GM (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh, p 588

    Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1:73–85

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser CC, Fonseca ROC, Ballhaus C, Berndt J (2013) Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides. Mineral Depos 48(1):115–127. doi:10.1007/s00126-012-0420-9

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out on the X-ray fluorescence microscopy beam line at the Australian Synchrotron, Clayton, Victoria, Australia. We acknowledge financial support for this facility from the Science and Industry Edowment Fund (SIEF). We thank Martin de Jonge for his programming of complex scan control scripts and Kathryn Spiers for beamline assistance during the experiment. James Mungall provided helpful reviews of a preliminary draft. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (www.massive.org.au). We acknowledge the support of the National Resource Sciences Precinct through the Advanced Resource Characterisation Facility for access to the FIB-SEM. We thank David Holwell, Raul Fonseca and Associate Editor Christian Ballhaus for helpful and constructive reviews that greatly improved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Barnes.

Additional information

Communicated by Chris Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Sets of corresponding three-element maps and Pt hot spot images for selected detailed scan areas from four different sections, showing relationships between Pt and As hot spots, and the presence of sulfide phases as indicated by Cu, Ni, and Se hot spots. Scale bar is 50 µm thick in all cases. (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnes, S.J., Fisher, L.A., Godel, B. et al. Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy. Contrib Mineral Petrol 171, 23 (2016). https://doi.org/10.1007/s00410-016-1232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1232-1

Keywords

Navigation