Skip to main content
Log in

The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the Lachlan Orogen of south-eastern Australia, the high-level, postorogenic, 368-Ma, I-type Tynong pluton contains granitic to granodioritic rocks that crystallised from a variety of mainly crustally derived magmas emplaced in the shallow crust, in an extensional regime. The isotopic characteristics of the main plutonic rocks are relatively unevolved (87Sr/86Sr t  ~ 0.705–0.706 and εNd t  ~ −0.4 to 0.6), suggesting source rocks not long separated from the mantle. We infer that arc mafic to intermediate rocks and associated immature greywackes formed the main crustal source rocks and that these are located in the largely unexposed Neoproterozoic–Cambrian Selwyn Block that forms the basement. As exposed near its southern margin, the pluton also contains minor, pillowed sheet-like intrusions of quartz dioritic rock that show mainly mingling structures with the enclosing granodiorites, as well as some hybrid pods and fairly abundant igneous microgranular enclaves that we infer to have been derived from the quartz dioritic sheets. Despite this evidence of direct mantle input into the Tynong magma system, the main granodioritic series do not appear to have been formed by magma mixing processes. Of any I-type granite in the region, the Tynong pluton has perhaps the most direct connection with mantle magmas. Nevertheless, the main mantle connection here is probably in the mantle-derived protolith for these crustal magmas and in the mantle thermal event that gave rise to melting of the deep crust in the Selwyn Block. This degree of mantle connectedness seems typical for I-type granitic rocks worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbott RNJ (1978) Peritectic reactions in the system An–Ab–Or–Qz–H2O. Can Mineral 16(2):245–256

    Google Scholar 

  • Allchurch S, Graham I, Daczko N (2008) Petrographic and geochemical characterisation of charnockitic and cumulate gabbro xenoliths from Coliban Dam, central Victoria, with implications for the evolution of the Lachlan Orogen. In: New generation advances in geoscience, Australian earth sciences convention. Geological Society of Australia, abstracts no. 89, p 40

  • Belousova EA (2005) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47(2):329–353. doi:10.1093/petrology/egi077

    Article  Google Scholar 

  • Bierlein FP, Arne DC, Keay SM, McNaughton NJ (2001) Timing relationships between felsic magmatism and mineralisation in the central Victorian gold province, southeast Australia. Aust J Earth Sci 48:883–899

    Article  Google Scholar 

  • Bremond d’Ars J, Davy P (1991) Gravity instabilities in magma chambers: rheological modelling. Earth Planet Sci Lett 105:319–329

    Article  Google Scholar 

  • Cawthorn RG, Brown PA (1976) A model for the formation and crystallisation of corundum-normative calc-alkaline magmas through amphibole fractionation. J Geol 84:467–476

    Article  Google Scholar 

  • Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276:309–329

    Article  Google Scholar 

  • Cayley RA, Taylor DH, Maher S, Willman CE (2002) Proterozoic–Early Palaeozoic continental crust beneath central Victoria: the Selwyn Block and its implications for gold mineralisation. In: Phillips GN, Ely KS (eds) Victoria undercover. CSIRO, Benalla, pp 25–38

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138

    Article  Google Scholar 

  • Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153

    Article  Google Scholar 

  • Clemens JD (1989) The importance of residual source material (restite) in granite petrogenesis: a comment. J Petrol 30:1313–1316

    Article  Google Scholar 

  • Clemens JD (1990) The granulite–granite connexion. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Clemens J (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61(1–2):1–18. doi:10.1016/s0012-8252(02)00107-1

    Article  Google Scholar 

  • Clemens JD, Benn K (2010) Anatomy, emplacement and evolution of a shallow-level, post-tectonic laccolith: the Mt Disappointment pluton, SE Australia. J Geol Soc 167(5):915–941. doi:10.1144/0016-76492009-120

    Article  Google Scholar 

  • Clemens JD, Bezuidenhout A (2014) Origins of co-existing diverse magmas in a felsic intrusion: the Lysterfield Granodiorite, Australia. Contrib Mineral Petrol 167(3):197–212. doi:10.1007/s00410-014-0991-9

    Article  Google Scholar 

  • Clemens JD, Birch WD (2012) Assembly of a zoned volcanic magma chamber from multiple magma batches: the Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos 155:272–288. doi:10.1016/j.lithos.2012.09.007

    Article  Google Scholar 

  • Clemens JD, Phillips GN (2014) Inferring a deep crustal source terrane from a high-level granitic pluton: the Strathbogie batholith, Australia. Contrib Mineral Petrol 168(5):1070. doi:10.1007/s00410-014-1070-y

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi:10.1016/j.lithos.2012.01.001

    Article  Google Scholar 

  • Clemens JD, Petford N, Mawer CK (1997) Ascent mechanisms of granitic magmas: causes and consequences. In: Holness M (ed) Deformation-enhanced fluid transport in the Earth’s crust and mantle. Chapman & Hall, London, pp 144–171

    Google Scholar 

  • Clemens JD, Darbyshire DPF, Flinders J (2009) Sources of post-orogenic calcalkaline magmas: the Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos 112(3–4):524–542. doi:10.1016/j.lithos.2009.03.026

    Article  Google Scholar 

  • Clemens JD, Helps PA, Stevens G (2010) Chemical structure in granitic magmas – a signal from the source? Earth Env Sci Trans R Soc Edinburgh 100(1–2):159–172. doi:10.1017/s1755691009016053

    Google Scholar 

  • Clemens JD, Birch WD, Dudley RJ (2011a) S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contrib Mineral Petrol 162(6):1315–1337. doi:10.1007/s00410-011-0652-1 [Clemens JD, Birch WD, Dudley RJ (2011a) Erratum to: S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contrib Mineral Petrol 162(6):1339. doi:10.1007/s00410-011-0666-8]

  • Clemens JD, Stevens G, Farina F (2011b) The enigmatic sources of I-type granites and the clinopyroxene–ilmenite connexion. Lithos 126:174–181. doi:10.1016/j.lithos.2011.07.004

    Article  Google Scholar 

  • Collins WJ (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Trans R Soc Edinb Earth Sci 87:171–179

    Article  Google Scholar 

  • Collins WJ (1998) Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Aust J Earth Sci 45(4):483–500. doi:10.1080/08120099808728406

    Article  Google Scholar 

  • Cramer JJ (1979) Geochemical variation in some differentiated granitic magmas east of Melbourne, Victoria. Ph.D. unpublished thesis, Department of Geology, La Trobe University, Bundoora

  • Crawford AJ, Buckland GL, VandenBerg AHM (1988) Cambrian. In: Douglas JG, Ferguson JA (eds) Geology of Victoria, 2nd edn. Geological Society of Australia, Victorian Division, Melbourne, pp 37–62

    Google Scholar 

  • Dempster TJ, Jenkin GRT, Rogers G (1994) The origin of rapakivi texture. J Petrol 35(4):963–981. doi:10.1093/petrology/35.4.963

    Article  Google Scholar 

  • DePaolo DJ, Perry FV, Baldridge WS (1992) Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies. Trans R Soc Edinb Earth Sci 83:439–446

    Article  Google Scholar 

  • Douce AEP (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75. doi:10.1144/GSL.SP.1999.168.01.05

    Article  Google Scholar 

  • Eberz GW, Nicholls IA (1988) Microgranitoid enclaves from the Swift Creek Pluton SE-Australia: textural and physical constraints on the nature of magma mingling process in the plutonic environments. Geol Rundsch 77:713–736

    Article  Google Scholar 

  • Elburg MA (1996) U–Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite: evidence for magma mingling. Contrib Mineral Petrol 123:177–189

    Article  Google Scholar 

  • Elburg MA, Nicholls IA (1995) Origin of microgranitoid enclaves in the S-type Wilsons Promontory batholith, Victoria—evidence for magma mingling. Aust J Earth Sci 42:423–435

    Article  Google Scholar 

  • Finger F, Schiller D (2012) Lead contents of S-type granites and their petrogenetic significance. Contrib Mineral Petrol 164:747–755. doi:10.1007/s00410-012-0771-3

    Article  Google Scholar 

  • Foster DA, Gray DR, Kwak TAP, Bucher M (1998) Chronology and tectonic framework of turbidite-hosted gold deposits in the western Lachlan Fold Belt, Victoria: 40Ar–39Ar results. Ore Geol Rev 13:229–250

    Article  Google Scholar 

  • Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35(4):319. doi:10.1130/g23134a.1

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Mills RD (2015) The volcanic–plutonic connection. In: Breitkreuz C, Rocchi S (eds) Advances in Volcanology. Springer, Berlin, Heidelberg, pp 1–22

    Google Scholar 

  • Gray CM (1984) An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Planet Sci Lett 70:47–60

    Article  Google Scholar 

  • Gray CM, Kemp AIS (2009) The two-component model for the genesis of granitic rocks in southeastern Australia—nature of the metasedimentary-derived and basaltic end members. Lithos 111:113–124. doi:10.1016/j.lithos.2009.04.010

    Article  Google Scholar 

  • Henry DA, Birch WD (1992) Cambrian greenstones on Phillip Island, Victoria. Aust J Earth Sci 39:567–575

    Article  Google Scholar 

  • Keay S, Collins WJ, McCulloch MT (1997) A three-component Sr–Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25(4):307. doi:10.1130/0091-7613(1997)025<0307:atcsni>2.3.co;2

    Article  Google Scholar 

  • Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic–plutonic parity and the differentiation of the continental crust. Nature 523:301–307. doi:10.1038/nature14584

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 317:980–983. doi:10.1126/science.1136154

    Article  Google Scholar 

  • Maas R, Kamenetsky MB, Sobolev AV, Kamenetsky VS, Sobolev NV (2005) Sr-Nd-Pb isotopic evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 35:549–552

    Article  Google Scholar 

  • Morand VJ (1995) The Barrabool Hills metagabbro: a curious piece of Cambrian jigsaw puzzle in Victoria. Geol Soc Aust Abstr 40:111

    Google Scholar 

  • Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol. doi:10.1007/s00410-014-1015-5

    Google Scholar 

  • Nekvasil H (1991) Ascent of felsic magmas and formation of rapakivi. Am Mineral 76:1279–1290

    Google Scholar 

  • Pistone M, Blundy JD, Brooker RA (2016) Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study. Contrib Mineral Petrol. doi:10.1007/s00410-015-1218-4

    Google Scholar 

  • Regmi KR (2012) Petrology and geochemistry of the Tynong Province Granitoids, Victoria, Australia. Ph.D. unpublished thesis, School of Geosciences, Monash University, Clayton

  • Richards JR, Singleton OP (1981) Palaeozoic Victoria, Australia: igneous rocks, ages and their interpretation. J Geol Soc Aust 28:395–421

    Article  Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828

    Article  Google Scholar 

  • Rossiter AG (1973) The geology, petrology and geochemistry of the granitic rocks of Victoria. M.Sc. unpublished thesis, La Trobe University

  • Rossiter AG (2001) Granites of the Victorian section of the Lachlan fold belt: characterisation and origins. Ph.D. unpublished thesis, La Trobe University

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2004) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Soesoo A (2000) Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from the Lachlan Fold Belt, Australia. J Geol Soc 157:135–149

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124

    Article  Google Scholar 

  • Thompson AB (1990) Heat, fluids and melting in the granulite facies. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer, Dordrecht, pp 37–58

    Chapter  Google Scholar 

  • Ventura G, Delgaudio P, Iezzi G (2006) Enclaves provide new insights on the dynamics of magma mingling: a case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth Planet Sci Lett 243(1–2):128–140. doi:10.1016/j.epsl.2006.01.004

    Article  Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439

    Article  Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas—microstructural evidence. J Geophys Res Solid Earth Planet 95(B11):17849–17859

    Article  Google Scholar 

  • Vernon RH (2007) Problems in identifying restite in granites of southeastern Australia, with speculations on sources of magma and enclaves. Can Mineral 45:147–178

    Article  Google Scholar 

  • Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite. Lithos 112(3–4):217–235. doi:10.1016/j.lithos.2009.02.011

    Article  Google Scholar 

  • Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Mineral Petrol 163(2):243–257. doi:10.1007/s00410-011-0673-9

    Article  Google Scholar 

  • Waight TE, Wiebe RA, Krogstad EJ (2007) Isotopic evidence for multiple contributions to felsic magma chambers: Gouldsboro Granite, Coastal Maine. Lithos 93(3–4):234–247. doi:10.1016/j.lithos.2006.03.066

    Article  Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95:731–750

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for Late Archean tectonomagmatic processes. J Petrol 43(8):1551–1570

    Article  Google Scholar 

  • Wiebe RA, Smith D, Sturm M, King EM, Seckler MS (1997) Enclaves in the Cadillac Mountain granite (coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38(3):393–423. doi:10.1093/petrology/38.3.393

    Article  Google Scholar 

  • Willman CE, Korsch RJ, Moore DH, Cayley RA, Lisitsin VA, Rawling TJ, Morand VJ, O’Shea PJ (2010) Crustal-scale fluid pathways and source rocks in the Victorian gold province, Australia: insights from deep seismic reflection profiles. Econ Geol 105(5):895–915

    Article  Google Scholar 

  • Wyborn LAI, Chappell BW (1979) Geochemical evidence for the existence of a pre-Ordovician sedimentary layer in south-eastern Australia. Bur Min Res Rec 1979(2):104

    Google Scholar 

  • Zen E (1986) Aluminium enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J Petrol 27:1095–1117

    Article  Google Scholar 

Download references

Acknowledgments

JC acknowledges the South African National Research Foundation for providing support for travel and field and analytical work through its programme of Incentive Funds for Rated Researchers. We thank Tom Sisson and Calvin Barnes who both provided very useful reviews, which assisted us in strengthening our arguments on the efficacy of various mooted petrogenetic processes and in clarifying and extending some of our explanations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clemens.

Additional information

Communicated by Hans Keppler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemens, J.D., Regmi, K., Nicholls, I.A. et al. The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contrib Mineral Petrol 171, 35 (2016). https://doi.org/10.1007/s00410-016-1251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1251-y

Keywords

Navigation