Skip to main content

Advertisement

Log in

Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

A wide range of ocular abnormalities have been documented to occur in patients with myotonic dystrophy type 1. The objectives of this study were to investigate the macular and optic nerve morphology using optical coherence tomography in patients with myotonic dystrophy type 1. A total of 30 myotonic dystrophy type 1 patients and 28 controls were recruited for participation. All participants underwent a thorough ophthalmologic examination, including spectral-domain optical coherence tomography of the macula and retinal nerve fibre layer. Images were reviewed by a retinal specialist ophthalmologist, masked to the diagnosis of the participants. Average macular thickness was significantly greater in the myotonic dystrophy group compared to controls [327.3 μm vs. 308.5 μm (p < 0.001)]. Macular thickness was significantly greater (p < 0.005) in five of the nine macular regions. The increase in macular thickness was due to the increased prevalence of epiretinal membranes in the myotonic dystrophy patient group (p = 0.0002): 48.2 % of myotonic dystrophy patient eyes had evidence of epiretinal membrane, compared with 12.5 % of control eyes. Examination revealed that 56.7 % of myotonic dystrophy patients had an epiretinal membrane in at least one eye. Visual acuity was reduced due to the presence of epiretinal membrane in six patient eyes and none of the control eyes. The presence of an epiretinal membrane was significantly correlated with increasing age in the patient group. We report an increased prevalence of epiretinal membrane in the myotonic dystrophy type 1 group. This may be a previously under-recognised form of visual impairment in this group. Epiretinal membranes can be treated surgically. We suggest that, in addition to a comprehensive clinical examination, optical coherence tomography examination is implemented as part of an ophthalmological assessment for the myotonic dystrophy type 1 patient with reduced visual acuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ranum LP, Day JW (2004) Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 74(5):793–804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Harper PS (1989) Myotonic dystrophy, 2nd edn. WB Saunders, London

    Google Scholar 

  3. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69(2):385

    Article  CAS  PubMed  Google Scholar 

  4. Rosa N, Lanza M, Borrelli M, De Bernardo M, Palladino A, Di Gregorio MG et al (2011) Low intraocular pressure resulting from ciliary body detachment in patients with myotonic dystrophy. Ophthalmology 118(2):260–264

    Article  PubMed  Google Scholar 

  5. Rosa N, Lanza M, Borrelli M, Palladino A, Di Gregorio MG, Politano L (2009) Intraocular pressure and corneal biomechanical properties in patients with myotonic dystrophy. Ophthalmology 116(2):231–234

    Article  PubMed  Google Scholar 

  6. Sarks J, Penfold P, Liu H, Sarks S, Killingsworth M, Horowitz G (1985) Retinal changes in myotonic dystrophy: a clinicomorphological study. Aust N Z J Ophthalmol 13(1):19–36

    Article  CAS  PubMed  Google Scholar 

  7. Verhagen WI, Huygen PL (1997) Abnormalities of ocular motility in myotonic dystrophy. Brain 120(Pt 10):1907–1909

    Article  PubMed  Google Scholar 

  8. Walker SD, Brubaker RF, Nagataki S (1982) Hypotony and aqueous humor dynamics in myotonic dystrophy. Invest Ophthalmol Vis Sci 22(6):744–751

    CAS  PubMed  Google Scholar 

  9. Wong VA, Beckingsale PS, Oley CA, Sullivan TJ (2002) Management of myogenic ptosis. Ophthalmology 109(5):1023–1031

    Article  PubMed  Google Scholar 

  10. Eshaghian J, March WF, Goossens W, Rafferty NS (1978) Ultrastructure of cataract in myotonic dystrophy. Invest Ophthalmol Vis Sci 17(3):289–293

    CAS  PubMed  Google Scholar 

  11. Hayasaka S, Kiyosawa M, Katsumata S, Honda M, Takase S, Mizuno K (1984) Ciliary and retinal changes in myotonic dystrophy. Arch Ophthalmol 102(1):88–93

    Article  CAS  PubMed  Google Scholar 

  12. Kimizuka Y, Kiyosawa M, Tamai M, Takase S (1993) Retinal changes in myotonic dystrophy: clinical and follow-up evaluation. Retina 13(2):129–135

    Article  CAS  PubMed  Google Scholar 

  13. Bollen E, den Heyer JC, Tolsma MH, Bellari S, Bos JE, Wintzen AR (1992) Eye movements in myotonic dystrophy. Brain 115(Pt 2):445–450

    Article  PubMed  Google Scholar 

  14. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  Google Scholar 

  15. Schara U, Schoser BGH (2006) Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol 13(2):71–79

    Article  PubMed  Google Scholar 

  16. Kierkegaard M, Tollback A (2007) Reliability and feasibility of the six minute walk test in subjects with myotonic dystrophy. Neuromuscul Disord 17(11–12):943–949

    Article  PubMed  Google Scholar 

  17. Mathieu J, Boivin H, Meunier D, Gaudreault M, Begin P (2001) Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology 56(3):336–340

    Article  CAS  PubMed  Google Scholar 

  18. Hunter A, Tsilfidis C, Mettler G, Jacob P, Mahadevan M, Surh L et al (1992) The correlation of age of onset with CTG trinucleotide repeat amplification in myotonic dystrophy. J Med Genet 29(11):774–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Groh WJ, Groh MR, Shen CY, Monckton DG, Bodkin CL, Pascuzzi RM (2011) Survival and CTG repeat expansion in adults with myotonic dystrophy type 1. Muscle Nerve 43(5):648–651

    Article  CAS  PubMed  Google Scholar 

  20. Milani P, Raimondi G, Morale D, Scialdone A (2012) Biomicroscopy versus optical coherence tomography screening of epiretinal membranes in patients undergoing cataract surgery. Retina 32(5):897–904

    Article  PubMed  Google Scholar 

  21. Ng CH, Cheung N, Wang JJ, Islam AFM, Kawasaki R, Meuer SM et al (2011) Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 118(4):694–699

    Article  PubMed Central  PubMed  Google Scholar 

  22. McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye 1(Pt 2):263–281

    Article  PubMed  Google Scholar 

  23. Mitchell P, Smith W, Chey T, Jie Jin W, Chang A (1997) Prevalence and associations of epiretinal membranes: the Blue Mountains eye study, Australia. Ophthalmology 104(6):1033–1040

    Article  CAS  PubMed  Google Scholar 

  24. Koh V, Cheung CY, Wong W-L, Cheung C-M, Wang JJ, Mitchell P et al (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53(2):1018–1022

    Article  PubMed  Google Scholar 

  25. Foos RY (1974) Vitreoretinal juncture: simple epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 189(4):231–250

    Article  CAS  Google Scholar 

  26. Bringmann A, Wiedemann P (2009) Involvement of muller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247(7):865–883

    Article  PubMed  Google Scholar 

  27. Chang L, Ernst T, Osborn D, Seltzer W, Leonido-Yee M, Poland RE (1998) Proton spectroscopy in myotonic dystrophy: correlations with CTG repeats. Arch Neurol 55(3):305–311

    Article  CAS  PubMed  Google Scholar 

  28. Yoshimura N, Otake M, Igarashi K, Matsunaga M, Takebe K, Kudo H (1990) Topography of Alzheimer’s neurofibrillary change distribution in myotonic dystrophy. Clin Neuropathol 9(5):234–239

    CAS  PubMed  Google Scholar 

  29. Hernandez–Hernandez O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E et al (2013) Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain 136(Pt 3):957–970

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tian M, Xu CS, Montpetit R, Kramer RH (2012) Rab3A mediates vesicle delivery at photoreceptor ribbon synapses. J Neurosci 32(20):6931–6936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Michels RG (1981) Vitreous surgery for macular pucker. Am J Ophthalmol 92(5):628–639

    Article  CAS  PubMed  Google Scholar 

  32. Ghazi-Nouri SMS, Tranos PG, Rubin GS, Adams ZC, Charteris DG (2006) Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery. Br J Ophthalmol 90(5):559–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah M. Kersten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersten, H.M., Roxburgh, R.H., Child, N. et al. Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1. J Neurol 261, 37–44 (2014). https://doi.org/10.1007/s00415-013-7141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-7141-6

Keywords

Navigation