Skip to main content

Advertisement

Log in

Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Previous reports of ocular abnormalities in Huntington’s disease (HD) have detailed eye movement disorders. The objective of this case–control study was to investigate optic nerve and macular morphology in HD using optical coherence tomography (OCT). A total of 26 HD patients and 29 controls underwent a thorough ophthalmic examination including spectral domain OCT scans of the macula and peripapillary retinal nerve fibre layer (RNFL). Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scale motor scores were acquired for HD patients. Temporal RNFL thickness was significantly reduced in the HD group (62.3 vs. 69.8 μm, p = 0.005), and there was a significant negative correlation between temporal RNFL thickness and disease duration (R 2 = −0.51, p = 0.04). Average peripapillary RNFL thickness was not significantly different between the HD and control groups. There was a significant negative correlation between macular volume and disease duration (R 2 = −0.71, p = 0.002), and motor scores (R 2 = −0.56, p = 0.01). Colour vision was significantly poorer in the HD group. Temporal RNFL is preferentially thinned in HD patients, possibly implicating mitochondrial dysfunction as the temporal RNFL is reduced in the patients with some mitochondrial disorders, including Leber’s hereditary optic neuropathy. The correlation between the decrease in macular volume and temporal RNFL, and increasing disease severity suggests that OCT may be a useful biomarker for disease progression in HD. Larger, longitudinal studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Purdon SE, Mohr E, Ilivitsky V, Jones BD (1994) Huntington’s disease: pathogenesis, diagnosis and treatment. J Psychiatry Neurosci 19(5):359–367

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Martin JB, Gusella JF (1986) Huntington’s disease. Pathogenesis and management. N Engl J Med 315(20):1267–1276

    Article  CAS  PubMed  Google Scholar 

  3. The Huntington’s Disease Collaborative Research Group and The Hungtinton Study Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s disease collaborative research group. Cell 72(6):971–83

  4. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC et al (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25(1):1–14

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ha AD, Fung VSC (2012) Huntington’s disease. Curr Opin Neurol 25(4):491–498

    Article  PubMed  Google Scholar 

  6. Blekher T, Johnson SA, Marshall J, White K, Hui S, Weaver M et al (2006) Saccades in presymptomatic and early stages of Huntington disease. Neurology 67(3):394–399

    Article  CAS  PubMed  Google Scholar 

  7. Peltsch A, Hoffman A, Armstrong I, Pari G, Munoz DP (2008) Saccadic impairments in Huntington’s disease. Exp Brain Res 186(3):457–469

    Article  CAS  PubMed  Google Scholar 

  8. Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS (1988) Saccades in Huntington’s disease: slowing and dysmetria. Neurology 38(3):427–431

    Article  CAS  PubMed  Google Scholar 

  9. Leigh RJ, Newman SA, Folstein SE, Lasker AG, Jensen BA (1983) Abnormal ocular motor control in Huntington’s disease. Neurology 33(10):1268–1275

    Article  CAS  PubMed  Google Scholar 

  10. Anderson TJ, MacAskill MR (2013) Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 9(2):74–85

    Article  PubMed  Google Scholar 

  11. Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31(4):362–373

    Article  PubMed Central  PubMed  Google Scholar 

  12. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  Google Scholar 

  13. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS (2004) Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12(11):2404–2422

    Article  PubMed  Google Scholar 

  14. Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116(2):137–146

    Article  PubMed  Google Scholar 

  15. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML et al (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113(2):324–332

    Article  PubMed  Google Scholar 

  16. Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69(16):1603–1609

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg BM, Frohman E (2010) Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 3(3):153–160

    Article  PubMed Central  PubMed  Google Scholar 

  18. Iseri PK, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26(1):18–24

    Article  PubMed  Google Scholar 

  19. Klistorner A, Garrick R, Barnett MH, Graham SL, Arvind H, Sriram P et al (2013) Axonal loss in nonoptic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology 80(3):242–245

    Article  PubMed  Google Scholar 

  20. Lange AP, Sadjadi R, Zhu F, Alkabie S, Costello F, Traboulsee AL (2013) Spectral-domain optical coherence tomography of retinal nerve fiber layer thickness in NMO patients. J Neuroophthalmol 33(3):213–219

    Article  PubMed  Google Scholar 

  21. Llufriu S, Sepulveda M, Blanco Y, Marin P, Moreno B, Berenguer J et al (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. Plos One 9(12):e113936

    Article  PubMed Central  PubMed  Google Scholar 

  22. Merle H, Olindo S, Donnio A, Richer R, Smadja D, Cabre P (2008) Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Invest Ophthalmol Vis Sci 49(10):4412–4417

    Article  PubMed  Google Scholar 

  23. Polo V, Garcia-Martin E, Bambo MP, Pinilla J, Larrosa JM, Satue M et al (2014) Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye (Basingstoke) 28(6):680–690

    CAS  Google Scholar 

  24. Satue M, Garcia-Martin E, Fuertes I, Otin S, Alarcia R, Herrero R et al (2013) Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye 27(4):507–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 8(1):117–132

    Article  PubMed Central  PubMed  Google Scholar 

  26. Reilmann R, Bohlen S, Kirsten F, Ringelstein EB, Lange HW (2011) Assessment of involuntary choreatic movements in Huntington’s disease–toward objective and quantitative measures. Mov Disord 26(12):2267–2273

    Article  PubMed  Google Scholar 

  27. Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41(5):689–692

    Article  PubMed  Google Scholar 

  28. Kersten HM, Roxburgh RH, Danesh-Meyer HV (2014) Ophthalmic manifestations of inherited neurodegenerative disorders. Nat Rev Neurol 10(6):349–362

    Article  PubMed  Google Scholar 

  29. Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C et al (2009) Visual system involvement in patients with Friedreich’s ataxia. Brain 132(Pt 1):116–123

    PubMed  Google Scholar 

  30. Sitarz KS, Chinnery PF, Yu-Wai-Man P (2012) Disorders of the optic nerve in mitochondrial cytopathies: new ideas on pathogenesis and therapeutic targets. Curr Neurol Neurosci Rep 12(3):308–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Barboni P, Savini G, Valentino ML, Montagna P, Cortelli P, De Negri AM et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 112(1):120–126

    Article  PubMed  Google Scholar 

  32. Klebe S, Depienne C, Gerber S, Challe G, Anheim M, Charles P et al (2012) Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 135(Pt 10):2980–2993

    Article  PubMed Central  PubMed  Google Scholar 

  33. Li J (2012) Inherited neuropathies. Semin Neurol 32(3):204–214

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–981

    Article  CAS  PubMed  Google Scholar 

  36. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA et al (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20(7):1438–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Orr AL, Li S, Wang CE, Li H, Wang J, Rong J et al (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28(11):2783–2792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fraser JA, Biousse V, Newman NJ (2010) The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 55(4):299–334

    Article  PubMed Central  PubMed  Google Scholar 

  39. Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel J-L et al (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet 11(26):3351–3359

    Article  CAS  PubMed  Google Scholar 

  40. Paulus W, Schwarz G, Werner A, Lange H, Bayer A, Hofschuster M et al (1993) Impairment of retinal increment thresholds in Huntington’s disease. Ann Neurol 34(4):574–578

    Article  CAS  PubMed  Google Scholar 

  41. Petrasch-Parwez E, Saft C, Schlichting A, Andrich J, Napirei M, Arning L et al (2005) Is the retina affected in Huntington disease? Acta Neuropathol 110(5):523–525

    Article  PubMed  Google Scholar 

  42. Petrasch-Parwez E, Habbes H-W, Weickert S, Lobbecke-Schumacher M, Striedinger K, Wieczorek S et al (2004) Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington’s disease. J Comp Neurol 479(2):181–197

    Article  CAS  PubMed  Google Scholar 

  43. Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J et al (2012) Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington’s disease. Neurobiol Dis 45(3):887–896

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Yasumura D, Ma AAK, Matthes MT, Yang H, Nielson G et al (2013) Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease. Plos One 8(2):e56026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ragauskas S, Leinonen H, Puranen J, Ronkko S, Nymark S, Gurevicius K et al (2014) Early retinal function deficit without prominent morphological changes in the R6/2 mouse model of Huntington’s disease. Plos One 9(12):e113317

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mizuno K, Asaoka M (1976) Cycloscopy and fluorescein cycloscopy. Investig Ophthalmol 15(7):561–564

    CAS  Google Scholar 

  47. Dorsey ER, Beck CA, Darwin K, Nichols P, Brocht AFD, Biglan KM et al (2013) Natural history of Huntington disease. JAMA Neurol 70(12):1520–1530

    PubMed  Google Scholar 

  48. The Huntington’s Disease Collaborative Research Group and The Hungtinton Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Huntington Study Group. Mov Disord 11(2):136–42

  49. Stroet A, Linker RA, Gold R (2013) Advancing therapeutic options in multiple sclerosis with neuroprotective properties. J Neural Transm 120(Suppl 1):S49–S53

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Roxburgh.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kersten, H.M., Danesh-Meyer, H.V., Kilfoyle, D.H. et al. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol 262, 2457–2465 (2015). https://doi.org/10.1007/s00415-015-7869-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7869-2

Keywords

Navigation