Skip to main content

Advertisement

Log in

Neurorehabilitation: applied neuroplasticity

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The prevalence of disability due to neurological conditions is escalating worldwide. Neurological disorders have significant disability-burden with long-term functional and psychosocial issues, requiring specialized rehabilitation services for comprehensive management, especially treatments tapping into brain recovery ‘neuroplastic’ processes. Neurorehabilitation is interdisciplinary and cross-sectorial, requiring coordinated effort of diverse sectors, professions, patients and community to manage complex condition-related disability. This review provides evidence for a range of neurorehabilitation interventions for four common neurological conditions: multiple sclerosis (MS), stroke, traumatic brain injury and Parkinson’s disease using the Grade of Recommendation, Assessment, Development and Evaluation tool for quality of evidence. Although, existing best-evidence for many interventions is still sparse, the overall findings suggest ‘strong’ evidence for physical therapy and psychological intervention for improved patient outcomes; and. ‘moderate’ evidence for multidisciplinary rehabilitation for longer term gains at the levels of activity (disability) and participation in MS and stroke population. The effect of other rehabilitation interventions is inconclusive, due to a paucity of methodologically robust studies. More research is needed to improve evidence-base for many promising rehabilitation interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2006) Neurological disorders: public health challenges. WHO, Geneva

    Google Scholar 

  2. Khan F, Amatya B, Mannan H, Rathore FA (2015) Neurorehabilitation in developing countries: challenges and the way forward. Phys Med Rehabil Int 2:1070

    Google Scholar 

  3. Royal College of Physicians, National Council for Palliative Care, British Society of Rehabilitation Medicine (2008) Long-term neurological conditions: management at the interface between neurology, rehabilitation and palliative care. Concise Guidance to Good Practice series, No 10. RCP, London

  4. Turner-Stokes L, Sykes N, Silber E (2008) Long-term neurological conditions: management at the interface between neurology, rehabilitation and palliative care. Clin Med 8:186–191

    Article  Google Scholar 

  5. Turner-Stokes L, Sykes N, Silber E et al (2007) From diagnosis to death: exploring the interface between neurology, rehabilitation and palliative care in managing people with long-term neurological conditions. Clin Med 7:129–136

    Article  Google Scholar 

  6. Cramer SC, Sur M, Dobkin BH et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134:1591–1609

    Article  PubMed  PubMed Central  Google Scholar 

  7. Braun K, Bock J (2011) The experience-dependent maturation of prefronto-limbic circuits and the origin of developmental psychopathology: implications for the pathogenesis and therapy of behavioural disorders. Dev Med Child Neurol 53:14–18

    Article  PubMed  Google Scholar 

  8. Prokopenko M (2009) Guided self-organization. HFSP J 3:287–289

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stifani N (2014) Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 8:293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Guo TZ, Wei T, Li WW et al (2014) Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. J Pain 15:1033–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiu TM, Chen L, Mao Y et al (2014) Sensorimotor cortical changes assessed with resting-state fMRI following total brachial plexus root avulsion. J Neurol Neurosurg Psychiatry 85:99–105

    Article  PubMed  Google Scholar 

  12. Freund P, Weiskopf N, Ashburner J et al (2013) MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol 12:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kou Z, Iraji A (2014) Imaging brain plasticity after trauma. Neural Regen Res 9:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  14. Melzack R, Wall PD (1989) The challenge of pain, 2nd edn. Penguin Books, London

    Google Scholar 

  15. Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54:311–325

    Article  PubMed  Google Scholar 

  16. Johansson BB (2000) Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke 31:223–230

    Article  CAS  PubMed  Google Scholar 

  17. Pang TY, Hannan AJ (2013) Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology 64:515–528

    Article  CAS  PubMed  Google Scholar 

  18. De Wit L, Putman K, Dejaeger E et al (2005) Use of time by stroke patients: a comparison of four European rehabilitation centers. Stroke 36:1977–1983

    Article  PubMed  Google Scholar 

  19. Frasca D, Tomaszczyk J, McFadyen BJ, Green RE (2013) Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review. Front Hum Neurosci 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  20. Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74:27–55

    Article  CAS  PubMed  Google Scholar 

  21. Krakauer JW (2005) Arm function after stroke: from physiology to recovery. Semin Neurol 25:384–395

    Article  PubMed  Google Scholar 

  22. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF (2012) Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair 26:923–931

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dietz V, Berger W (1983) Normal and impaired regulation of muscle stiffness in gait: a new hypothesis about muscle hypertonia. Exp Neurol 79:680–687

    Article  CAS  PubMed  Google Scholar 

  24. Burke D (1988) Spasticity as an adaptation to pyramidal tract injury. Adv Neurol 47:401–423

    CAS  PubMed  Google Scholar 

  25. Bourbonnais D, Vanden Noven S (1989) Weakness in patients with hemiparesis. Am J Occup Ther 43:313–319

    Article  CAS  PubMed  Google Scholar 

  26. World Health Organization (2011) World report on disability. WHO, Geneva

    Google Scholar 

  27. Pajaro-Blázquez M, Miangolarra-Page JC (2013) Clinical use of emerging technologies for neurorehabilitation. Am J Phys Med Rehabil 92:e1–e3

    Article  Google Scholar 

  28. Khan F, Amatya B, Kesselring J, Galea MP (2015) Telerehabilitation for persons with multiple sclerosis. A Cochrane review. Eur J Phys Rehabil Med 51:311–325

    CAS  PubMed  Google Scholar 

  29. World Health Organisation (2001) The international classification of functioning, Disability and Health. WHO, Geneva

    Google Scholar 

  30. Yin D, Slavin KV (2015) A review of neuromodulation in the neurorehabilitation. Int J Neurorehabilitation 2:151

    Article  Google Scholar 

  31. Elsner B, Kugler J, Pohl M, Mehrholz J (2013) Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane Database Syst Rev 11:CD009645

    Google Scholar 

  32. Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65:466–468

    Article  PubMed  Google Scholar 

  33. Balshem H, Helfand M, Schunemann HJ et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406

    Article  PubMed  Google Scholar 

  34. Khan F, Turner-Stokes L, Ng L, Kilpatrick T, Amatya B (2007) Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst Rev 2:CD006036

    Google Scholar 

  35. Medical Research Council (MRC) (2000) A framework for development and evaluation of RCTs for complex interventions to improve health. MRC, London

    Google Scholar 

  36. Khan F, Amatya B (2013) Multidisciplinary rehabilitation in women with breast cancer: a systematic review. Int J Phys Med Rehabil S 1:001. doi:10.4172/2329-9096.S4171-4001

    CAS  Google Scholar 

  37. Khan F, Ng L, Amatya B, Brand C, Turner-Stokes L (2010) Multidisciplinary care for Guillain-Barre syndrome. Cochrane Database Syst Rev 10:CD008505

    Google Scholar 

  38. Turner-Stokes L (2008) Evidence for the effectiveness of multi-disciplinary rehabilitation following acquired brain injury: a synthesis of two systematic approaches. J Rehabil Med 40:691–701

    Article  PubMed  Google Scholar 

  39. Freedman MS (2011) Long-term follow-up of clinical trials of multiple sclerosis therapies. Neurology 76:S26–S34

    Article  CAS  PubMed  Google Scholar 

  40. Turner-Stokes L, Pick A, Nair A, Disler PB, Wade DT (2015) Multi-disciplinary rehabilitation for acquired brain injury in adults of working age. Cochrane Database Syst Rev 12:CD004170

    Google Scholar 

  41. van der Putten JJ, Hobart JC, Freeman JA, Thompson AJ (1999) Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the Barthel index and the Functional Independence Measure. J Neurol Neurosurg Psychiatry 66:480–484

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khan F, Amatya B, Ng L (2010) Use of the International Classification of Functioning, Disability and Health to describe patient-reported disability: a comparison of Guillain Barre syndrome with multiple sclerosis in a community cohort. J Rehabil Med 42:708–714

    Article  PubMed  Google Scholar 

  43. American Psychological Association (2016) The road to resilience. http://www.apa.org/helpcenter/road-resilience.aspx. Accessed 1 Feb 2016

  44. Galea MP, Khan F, Amatya B et al (2016) Implementation of a technology-assisted program to intensify upper limb rehabilitation in neurologically impaired participants: a prospective study. J Rehabil Med 48:522–528

    Article  PubMed  Google Scholar 

  45. Khan F, Amatya B, Elmalik A et al (2016) An enriched environment program during inpatient neuro-rehabilitation: a randomized controlled trial. J Rehabil Med 48:417–425

    Article  PubMed  Google Scholar 

  46. Dobkin BH (2013) Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol 26:602–608

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aziz NA, Leonardi-Bee J, Phillips M et al (2008) Therapy-based rehabilitation services for patients living at home more than one year after stroke. Cochrane Database Syst Rev 2:CD005952

    Google Scholar 

  48. Demetrios M, Khan F, Turner-Stokes L, Brand C, McSweeney S (2013) Multidisciplinary rehabilitation following botulinum toxin and other focal intramuscular treatment for post-stroke spasticity. Cochrane Database Syst Rev 6:CD009689

    Google Scholar 

  49. Rietberg MB, Brooks D, Uitdehaag BM, Kwakkel G (2005) Exercise therapy for multiple sclerosis. Cochrane Database Syst Rev 1:CD003980

    Google Scholar 

  50. Heine M, van de Port I, Rietberg MB, van Wegen EE, Kwakkel G (2015) Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev 9:CD009956

    Google Scholar 

  51. Saunders DH, Sanderson M, Brazzelli M, Greig CA, Mead GE (2013) Physical fitness training for stroke patients. Cochrane Database Syst Rev 10:CD003316

    Google Scholar 

  52. States RA, Pappas E, Salem Y (2009) Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev 3:CD006075

    Google Scholar 

  53. Mehrholz J, Pohl M, Elsner B (2014) Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 1:CD002840

    Google Scholar 

  54. Xiao Y, Luo M, Wang J, Luo H (2012) Inspiratory muscle training for the recovery of function after stroke. Cochrane Database Syst Rev 5:CD009360

    Google Scholar 

  55. Pollock A, Gray C, Culham E, Durward BR, Langhorne P (2014) Interventions for improving sit-to-stand ability following stroke. Cochrane Database Syst Rev 5:CD007232

    Google Scholar 

  56. English C, Hillier SL (2010) Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev 7:CD007513

    Google Scholar 

  57. French B, Thomas LH, Leathley MJ et al (2007) Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 4:CD006073

    Google Scholar 

  58. Winter J, Hunter S, Sim J, Crome P (2011) Hands-on therapy interventions for upper limb motor dysfunction following stroke. Cochrane Database Syst Rev 6:CD006609

    Google Scholar 

  59. Hassett L, Moseley AM, Tate R, Harmer A (2008) Fitness training for cardiorespiratory conditioning after traumatic brain injury. Cochrane Database Syst Rev 2:CD006123

    Google Scholar 

  60. Tomlinson CL, Patel S, Meek C et al (2013) Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev 9:CD002817

    Google Scholar 

  61. Tomlinson CL, Herd CP, Clarke CE et al (2014) Physiotherapy for Parkinson’s disease: a comparison of techniques. Cochrane Database Syst Rev 6:CD002815

    Google Scholar 

  62. Mehrholz J, Kugler J, Storch A et al (2015) Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst Rev 9:CD007830

    Google Scholar 

  63. Elbers RG, Verhoef J, van Wegen EE, Berendse HW, Kwakkel G (2015) Interventions for fatigue in Parkinson’s disease. Cochrane Database Syst Rev 10:CD010925

    Google Scholar 

  64. Thieme H, Mehrholz J, Pohl M, Behrens J, Dohle C (2012) Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 3:CD008449

    Google Scholar 

  65. Mehrholz J, Kugler J, Pohl M (2011) Water-based exercises for improving activities of daily living after stroke. Cochrane Database Syst Rev 1:CD008186

    Google Scholar 

  66. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M (2013) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 7:CD006185

    Google Scholar 

  67. Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M (2012) Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 6:CD006876

    Google Scholar 

  68. Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2:CD008349

    Google Scholar 

  69. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R (2015) Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 10:CD004433

    Google Scholar 

  70. Bennett MH, Heard R (2004) Hyperbaric oxygen therapy for multiple sclerosis. Cochrane Database Syst Rev 1:CD003057

    Google Scholar 

  71. Bennett MH, Trytko B, Jonker B (2004) Hyperbaric oxygen therapy for the adjunctive treatment of traumatic brain injury. Cochrane Database Syst Rev 4:CD004609

    Google Scholar 

  72. Schierhout G, Roberts I (2000) Hyperventilation therapy for acute traumatic brain injury. Cochrane Database Syst Rev 2:CD000566

    Google Scholar 

  73. Den Hertog HM, van der Worp HB, Tseng MC, Dippel DW (2009) Cooling therapy for acute stroke. Cochrane Database Syst Rev 1:CD001247

    Google Scholar 

  74. Saxena M, Andrews PJ, Cheng A, Deol K, Hammond N (2014) Modest cooling therapies (35 masculineC to 37.5 masculineC) for traumatic brain injury. Cochrane Database Syst Rev 8:CD006811

    Google Scholar 

  75. Sitja Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A et al (2012) Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database Syst Rev 2:CD009097

    Google Scholar 

  76. Elsner B, Kugler J, Pohl M, Mehrholz J (2013) Transcranial direct current stimulation (tDCS) for improving aphasia in patients after stroke. Cochrane Database Syst Rev 6:CD009760

    Google Scholar 

  77. Elsner B, Kugler J, Pohl M, Mehrholz J (2015) Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev 5:CD009760

    Google Scholar 

  78. Hao Z, Wang D, Zeng Y, Liu M (2013) Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev 5:CD008862

    Google Scholar 

  79. Lombardi FFL, Taricco M, De Tanti A, Telaro E, Liberati A (2002) Sensory stimulation for brain injured individuals in coma or vegetative state. Cochrane Database Syst Rev 2:CD001427

    Google Scholar 

  80. Steultjens EM, Dekker J, Bouter LM et al (2003) Occupational therapy for multiple sclerosis. Cochrane Database Syst Rev 3:CD003608

    Google Scholar 

  81. Fletcher-Smith JC, Walker MF, Cobley CS, Steultjens EM, Sackley CM (2013) Occupational therapy for care home residents with stroke. Cochrane Database Syst Rev 6:CD010116

    Google Scholar 

  82. Dixon L, Duncan D, Johnson P et al (2007) Occupational therapy for patients with Parkinson’s disease. Cochrane Database Syst Rev 3:CD002813

    Google Scholar 

  83. Herd CP, Tomlinson CL, Deane KH et al (2012) Speech and language therapy versus placebo or no intervention for speech problems in Parkinson’s disease. Cochrane Database Syst Rev 8:CD002812

    Google Scholar 

  84. Herd CP, Tomlinson CL, Deane KH et al (2012) Comparison of speech and language therapy techniques for speech problems in Parkinson’s disease. Cochrane Database Syst Rev 8:CD002814

    Google Scholar 

  85. Rosti-Otajarvi EM, Hamalainen PI (2014) Neuropsychological rehabilitation for multiple sclerosis. Cochrane Database Syst Rev 2:CD009131

    Google Scholar 

  86. das Nair R, Ferguson H, Stark DL, Lincoln NB (2012) Memory Rehabilitation for people with multiple sclerosis. Cochrane Database Syst Rev 3:CD008754

    Google Scholar 

  87. Thomas PW, Thomas S, Hillier C, Galvin K, Baker R (2006) Psychological interventions for multiple sclerosis. Cochrane Database Syst Rev 1:CD004431

    Google Scholar 

  88. Barclay-Goddard RE, Stevenson TJ, Poluha W, Thalman L (2011) Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev 5:CD005950

    Google Scholar 

  89. Bowen A, Hazelton C, Pollock A, Lincoln NB (2013) Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev 7:CD003586

    Google Scholar 

  90. Cheng D, Qu Z, Huang J et al (2015) Motivational interviewing for improving recovery after stroke. Cochrane Database Syst Rev 6:CD011398

    Google Scholar 

  91. Loetscher T, Lincoln NB (2013) Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst Rev 5:CD002842

    Google Scholar 

  92. Nair RD, Lincoln NB (2007) Cognitive rehabilitation for memory deficits following stroke. Cochrane Database Syst Rev 3:CD002293

    Google Scholar 

  93. Chung CS, Pollock A, Campbell T, Durward BR, Hagen S (2013) Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev 4:CD008391

    Google Scholar 

  94. Lane-Brown A, Tate R (2009) Interventions for apathy after traumatic brain injury. Cochrane Database Syst Rev 2:CD006341

    Google Scholar 

  95. Soo C, Tate R (2007) Psychological treatment for anxiety in people with traumatic brain injury. Cochrane Database Syst Rev 3:CD005239

    Google Scholar 

  96. Farinotti M, Vacchi L, Simi S et al (2012) Dietary interventions for multiple sclerosis. Cochrane Database Syst Rev 12:CD004192

    PubMed  Google Scholar 

  97. Jagannath VA, Fedorowicz Z, Asokan GV, Robak EW, Whamond L (2010) Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev 12:CD008422

    Google Scholar 

  98. Perel P, Yanagawa T, Bunn F et al (2006) Nutritional support for head-injured patients. Cochrane Database Syst Rev 4:CD001530

    Google Scholar 

  99. Bradt J, Magee WL, Dileo C, Wheeler BL, McGilloway E (2010) Music therapy for acquired brain injury. Cochrane Database Syst Rev 7:CD006787

    Google Scholar 

  100. Khan F, Ng L, Turner-Stokes L (2009) Effectiveness of vocational rehabilitation intervention on the return to work and employment of persons with multiple sclerosis. Cochrane Database Syst Rev 1:CD007256

    Google Scholar 

  101. George S, Crotty M, Gelinas I, Devos H (2014) Rehabilitation for improving automobile driving after stroke. Cochrane Database Syst Rev 2:CD008357

    Google Scholar 

  102. Khan F, Amatya B, Kesselring J, Galea M (2015) Telerehabilitation for persons with multiple sclerosis. Cochrane Database Syst Rev 4:CD010508

    Google Scholar 

  103. Laver KE, Schoene D, Crotty M et al (2013) Telerehabilitation services for stroke. Cochrane Database Syst Rev 12:CD010255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fary Khan.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Financial disclosure

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Amatya, B., Galea, M.P. et al. Neurorehabilitation: applied neuroplasticity. J Neurol 264, 603–615 (2017). https://doi.org/10.1007/s00415-016-8307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8307-9

Keywords

Navigation