Skip to main content

Advertisement

Log in

Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

MRI atrophy predicts cognitive status in AD. However, this relationship has not been investigated in early-onset AD (EOAD, < 65 years) patients with a biomarker-based diagnosis.

Methods

Forty eight EOAD (MMSE ≥ 15; A + T + N +) and forty two age-matched healthy controls (HC; A − T − N −) from a prospective cohort underwent full neuropsychological assessment, 3T-MRI scan and lumbar puncture at baseline. Participants repeated the cognitive assessment annually. We used linear mixed models to investigate whether baseline cortical thickness (CTh) or subcortical volume predicts two-year cognitive outcomes in the EOAD group.

Results

In EOAD, hemispheric CTh and ventricular volume at baseline were associated with global cognition, language and attentional/executive functioning 2 years later (p < 0.0028). Regional CTh was related to most cognitive outcomes (p < 0.0028), except verbal/visual memory subtests. Amygdalar volume was associated with letter fluency test (p < 0.0028). Hippocampal volume did not show significant associations.

Conclusion

Baseline hemispheric/regional CTh, ventricular and amygdalar volume, but not the hippocampus, predict two-year cognitive outcomes in EOAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The summary tables that support the findings of this study are available on request from the corresponding author, AL.

Code availability

Code used in this study is available on request from the corresponding author, AL.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

bankssts:

Banks of the superior temporal sulcus

BDAE:

The Boston Diagnostic Aphasia Examination

BNT:

Boston Naming Test

CERAD:

Consortium to Establish a Registry for Alzheimer’s disease

CSF:

Cerebrospinal fluid

CTh:

Cortical thickness

DFR:

Delayed free recall

Digits-B:

Digits span backwards

Digits-F:

Digits span forwards

DTR:

Delayed total recall

EOAD:

Early-onset AD

LFT:

Letter fluency test

FCSRT:

Free and Cued Selective Reminding Test

FDG-PET:

Fluorodeoxyglucose positron emission tomography

FL:

Free learning

GC:

Global composite

HC:

Healthy controls

HCB:

Hospital Clínic de Barcelona

LM:

Linear model

LME:

Linear mixed-effects model

LOAD:

Late-onset AD

MMSE:

Mini-Mental State Examination

MRI:

Magnetic resonance imaging

MTL:

Medial temporal lobe

NIA-AA:

National Institute on Aging-Alzheimer’s Association

SF:

Semantic fluency test

TL:

Total learning

TMT-A:

Trail Making Test-A

VOSP:

Visual object and space perception battery

WAB:

Western Aphasia Battery

WAIS:

Wechsler Adult Intelligence Scale

YOE:

Years of education

References

  1. Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. https://doi.org/10.1016/S1474-4422(12)70291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray ME, Graff-Radford NR, Ross OA et al (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796. https://doi.org/10.1016/S1474-4422(11)70156-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mendez MF (2012) Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD. Arch Med Res 43:677–685. https://doi.org/10.1016/j.arcmed.2012.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ossenkoppele R, Cohn-Sheehy BI, La Joie R et al (2015) Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp 36:4421–4437. https://doi.org/10.1002/hbm.22927

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aziz AL, Giusiano B, Joubert S et al (2017) Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer’s disease. Neurobiol Aging 54:22–30. https://doi.org/10.1016/j.neurobiolaging.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  6. Harper L, Bouwman F, Burton EJ et al (2017) Patterns of atrophy in pathologically confirmed dementias: a voxelwise analysis. J Neurol Neurosurg Psychiatry 88:908–916. https://doi.org/10.1136/jnnp-2016-314978

    Article  PubMed  Google Scholar 

  7. Falgàs N, Sánchez-Valle R, Bargalló N et al (2019) Hippocampal atrophy has limited usefulness as a diagnostic biomarker on the early onset Alzheimer’s disease patients: a comparison between visual and quantitative assessment. NeuroImage Clin 23:101927. https://doi.org/10.1016/j.nicl.2019.101927

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koedam ELGE, Lauffer V, Van Der Vlies AE et al (2010) Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimer’s Dis 19:1401–1408. https://doi.org/10.3233/JAD-2010-1337

    Article  Google Scholar 

  9. Balasa M, Gelpi E, Antonell A et al (2011) Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease. Neurology 76:1720–1725. https://doi.org/10.1212/WNL.0b013e31821a44dd

    Article  CAS  PubMed  Google Scholar 

  10. Jack CR, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 14:535–562. https://doi.org/10.1016/j.jalz.2018.02.018

    Article  Google Scholar 

  11. Schuff N, Woerner N, Boreta L et al (2009) MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077. https://doi.org/10.1093/brain/awp007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Rossum IA, Vos SJB, Burns L et al (2012) Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 79:1809–1816. https://doi.org/10.1212/WNL.0b013e3182704056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marizzoni M, Ferrari C, Jovicich J et al (2019) Predicting and tracking short term disease progression in amnestic mild cognitive impairment patients with prodromal Alzheimer’s disease: structural brain biomarkers. J Alzheimer’s Dis 69:3–14. https://doi.org/10.3233/JAD-180152

    Article  CAS  Google Scholar 

  14. Tabatabaei-Jafari H, Shaw ME, Walsh E, Cherbuin N (2019) Regional brain atrophy predicts time to conversion to Alzheimer’s disease, dependent on baseline volume. Neurobiol Aging 83:86–94. https://doi.org/10.1016/j.neurobiolaging.2019.08.033

    Article  PubMed  Google Scholar 

  15. Phillips ML, Stage EC, Lane KA et al (2019) Neurodegenerative patterns of cognitive clusters of early-onset Alzheimer’s disease subjects: evidence for disease heterogeneity. Dement Geriatr Cogn Disord 46202:1–12. https://doi.org/10.1159/000504341

    Article  Google Scholar 

  16. Van Der Vlies AE, Staekenborg SS, Admiraal-Behloul F et al (2013) Associations between magnetic resonance imaging measures and neuropsychological impairment in early and late onset Alzheimer’s disease. J Alzheimer’s Dis 35:169–178. https://doi.org/10.3233/JAD-121291

    Article  Google Scholar 

  17. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  Google Scholar 

  18. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  Google Scholar 

  19. Antonell A, Tort-Merino A, Ríos J et al (2020) Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimer’s Dement 16:262–272. https://doi.org/10.1016/j.jalz.2019.09.001

    Article  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  PubMed  Google Scholar 

  21. Grober E, Buschke H, Korey SR (1987) Genuine memory deficits in dementia. Dev Neuropsychol 3:13–36. https://doi.org/10.1080/87565648709540361

    Article  Google Scholar 

  22. Valls Pedret C, Olives Cladera J, Bosch Capdevila B et al (2011) Test de paisajes para la valoración de la memoria visual en la enfermedad de Alzheimer. Rev Neurol 53:1. https://doi.org/10.33588/rn.5301.2011238

    Article  PubMed  Google Scholar 

  23. Kaplan E, Goodglass HWS (1983) The Boston Naming Test. Philadelphia Lea Febiger

    Google Scholar 

  24. Roth C (2011) Boston Diagnostic Aphasia Examination. In: Jeffrey SK, John D, Bruce C (eds) Encyclopedia of Clinical Neuropsychology. Springer, New York

    Google Scholar 

  25. Goodglass H, Kaplan E, Barresi B (2001) The Assessment of Aphasia and Related Disorders. Lippincott Williams & Wilkins

    Google Scholar 

  26. Kertesz A (2007) Western Aphasia Battery: Revised. Pearson

    Google Scholar 

  27. Morris JC, Heyman A, Mohs RC et al (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. https://doi.org/10.1212/wnl.39.9.1159

    Article  PubMed  Google Scholar 

  28. Warrington EK, James M (1991) The visual object and space perception battery

  29. Reitan RM, Wolfson D (1985) The Halstead-Reitan Neuropsychological Test Battery: theory and clinical interpretation. Neuropsychology Press, USA

    Google Scholar 

  30. Newcombe F (1969) Missile Wounds of the Brain: a Study of Psychological Deficits. Oxford U.P.

    Google Scholar 

  31. Wechsler D (2008) WAIS-IV : Wechsler adult intelligence scale. TX Psychol Corp, San Antonio

    Google Scholar 

  32. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055. https://doi.org/10.1073/pnas.200033797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22. https://doi.org/10.1093/cercor/bhg087

    Article  PubMed  Google Scholar 

  34. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  PubMed  Google Scholar 

  35. Seidman LJ, Faraone SV, Goldstein JM et al (1997) Reduced subcortical brain volumes in nonpsychotic siblings of schizophrenic patients: a pilot magnetic resonance imaging study. Am J Med Genet Neuropsychiatr Genet 74:507–514. https://doi.org/10.1002/(SICI)1096-8628(19970919)74:5%3c507::AID-AJMG11%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  36. Palasí A, Gutiérrez-Iglesias B, Alegret M et al (2015) Differentiated clinical presentation of early and late-onset Alzheimer’s disease: is 65 years of age providing a reliable threshold? J Neurol 262:1238–1246. https://doi.org/10.1007/s00415-015-7698-3

    Article  CAS  PubMed  Google Scholar 

  37. Smits LL, Pijnenburg YAL, Koedam ELGE et al (2012) Early onset Alzheimer’s disease is associated with a distinct neuropsychological profile. J Alzheimer’s Dis 30:101–108. https://doi.org/10.3233/JAD-2012-111934

    Article  Google Scholar 

  38. Wattmo C, Wallin ÅK (2017) Early- versus late-onset Alzheimer disease: long-term functional outcomes, nursing home placement, and risk factors for rate of progression. Dement Geriatr Cogn Dis Extra 7:172–187. https://doi.org/10.1159/000455943

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pontecorvo MJ, Devous MD, Navitsky M et al (2017) Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140:748–763. https://doi.org/10.1093/brain/aww334

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koychev I, Gunn RN, Firouzian A et al (2017) PET tau and amyloid-β burden in mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimer’s Dis 60:283–293. https://doi.org/10.3233/JAD-170129

    Article  CAS  Google Scholar 

  41. Quenon L, Dricot L, Woodard JL et al (2016) Prediction of free and cued selective reminding test performance using volumetric and amyloid-based biomarkers of Alzheimer’s disease. J Int Neuropsychol Soc 22:991–1004. https://doi.org/10.1017/S1355617716000813

    Article  PubMed  Google Scholar 

  42. Ossenkoppele R, Smith R, Ohlsson T et al (2019) Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease. Neurology 92:e601–e612. https://doi.org/10.1212/WNL.0000000000006875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitwell JL, Dickson DW, Murray ME et al (2012) Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 11:868–877. https://doi.org/10.1016/S1474-4422(12)70200-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Risacher SL, Anderson WH, Charil A et al (2017) Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology 89:2176–2186. https://doi.org/10.1212/WNL.0000000000004670

    Article  PubMed  PubMed Central  Google Scholar 

  45. Park KH, Noh Y, Choi EJ et al (2017) Functional connectivity of the hippocampus in early- and vs. late-onset alzheimer’s disease. J Clin Neurol 13:387–393. https://doi.org/10.3988/jcn.2017.13.4.387

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dickerson BC, Brickhouse M, McGinnis S, Wolk DA (2017) Alzheimer’s disease: The influence of age on clinical heterogeneity through the human brain connectome. Alzheimer’s Dement Diagnosis. Assess Dis Monit 6:122–135. https://doi.org/10.1016/j.dadm.2016.12.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank patients, their relatives and healthy controls for their participation in the research. We acknowledge support for the project provided by Spanish Ministry of Science and Innovation-Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, “Una manera de hacer Europa”, CERCA Programme/Generalitat de Catalunya and Departament de Salut—Generalitat de Catalunya (PERIS 2016-2020). We also are indebted to the Magnetic Resonance Image core facility of the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for the technical help.

Funding

This work was supported by Spanish Ministry of Science and Innovation-Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, “Una manera de hacer Europa” [PI19/00449 to Dr. Lladó (AL)] and CERCA Programme/Generalitat de Catalunya. AL also received funding from Departament de Salut—Generalitat de Catalunya (PERIS 2016–2020 SLT008/18/00061). Roser Sala-Llonch received funding from the Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain. Nuria Guillén received funding from a PFIS grant (FI20/00076). Oscar Ramos received funding from a PFIS grant (FI18/00121). This work has been partially performed thanks to the 3T Equipment of Magnetic Resonance at IDIBAPS (project IBPS15-EE-3688 co funded by MCIU and by ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Lladó.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Approval was obtained from Hospital Clínic Ethics Committee. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate/Consent for publication

Informed consent was obtained from all individual participants included in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contador, J., Pérez-Millan, A., Guillen, N. et al. Baseline MRI atrophy predicts 2-year cognitive outcomes in early-onset Alzheimer’s disease. J Neurol 269, 2573–2583 (2022). https://doi.org/10.1007/s00415-021-10851-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10851-9

Keywords

Navigation