Skip to main content

Advertisement

Log in

Disclosing disease mechanisms with a spatio-temporal summation paradigm

  • Perspective
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

We develop the logic for a stimulus that can evaluate cone-dependent spatial summation and detail the modelling and interpretation of thresholds obtained with this stimulus.

Methods

Fifteen observers participated, including two young normals tested extensively in control experiments, and a clinical trial based on four observers with age-related macular degeneration (AMD), four age-similar controls and five young observers. Monocular spatial summation functions were measured with contrast-modulated Gabor targets that approximated the optimal visual contrast detector. Thresholds were returned from a yes/no adaptive psychophysical algorithm. By fine titration along the size domain it was demonstrated that the spatial summation of normal observers can be adequately described by a two-component model. A reduced set of variables are proposed for clinical applications and the model was applied to data derived using these variables in persons with AMD and age-similar controls.

Results

We do not find a significant age-related loss of contrast sensitivity in our normal group. On the other hand, persons with early AMD exhibited a 0.41 log unit loss of sensitivity (P=0.04) from age-similar controls, without any change in their maximum summation area (Amax).

Conclusions

The nature of the spatial summation is consistent with the interpretation that early AMD produces a decrease in cone input to post-receptoral mechanisms in the absence of neural remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson AJ, Vingrys AJ (2001) The effect of object blur on luminance-pedestal flicker thresholds. In: Wall M, Mills RP (eds) Perimerty update 2000/2001. Kugler Publications, The Hague, pp 115–120

    Google Scholar 

  2. Barlow HB (1958) Temporal and spatial summation in human vision at different background luminances. J Physiol 141:337–350

    PubMed  CAS  Google Scholar 

  3. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration: the international ARM epidemiological study group. Surv Ophthalmol 39:367–374

    Article  PubMed  CAS  Google Scholar 

  4. Bowen RW, Wilson HR (1994) A two-process analysis of pattern masking. Vision Res 34:645–657

    Article  PubMed  CAS  Google Scholar 

  5. Brown B, Peterken C, Bowman KJ, Crassini B (1989) Spatial summation in young and elderly observers. Ophthal Physiol Opt 9:310–313

    Article  CAS  Google Scholar 

  6. Campbell FW, Green DG (1965) Optical and retinal factors affecting visual resolution. J Physiol 181:576–593

    PubMed  CAS  Google Scholar 

  7. Chaparro A, Stromeyer CF III, Huang EP, Kronauer RE, Eskew RT Jr (1993) Colour is what the eye sees best. Nature 361:348–350

    Article  PubMed  CAS  Google Scholar 

  8. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    PubMed  CAS  Google Scholar 

  9. Curcio CA, Owsley C, Jackson GR (2000) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41:2015–2018

    PubMed  CAS  Google Scholar 

  10. Drum B (1984) Flicker and suprathreshold spatial summation: evidence for a two-channel model of achromatic brightness. Percept Psychophys 36:245–250

    PubMed  CAS  Google Scholar 

  11. Eisner A, Klein ML, Zilis JD, Watkins MD (1992) Visual function and the subsequent development of exudative age-related macular degeneration. Invest Ophthalmol Vis Sc 33:3091–3102

    CAS  Google Scholar 

  12. Eisner A, Stoumbos VD, Klein ML, Fleming SA (1991) Relations between fundus appearance and function: eyes whose fellow eye has exudative age-related macular degeneration. Invest Ophthalmol Vis Sci 32:8–20

    PubMed  CAS  Google Scholar 

  13. Elliott D, Whitaker D, MacVeigh D (1990) Neural contribution to spatiotemporal contrast sensitivity decline in healthy aging eyes. Vision Res 40:541–548

    Article  Google Scholar 

  14. Eysel UT, Peichl L (1985) Regenerative capacity of retinal axons in the cat, rabbit, and guinea pig. Exp Neurol 88:757–766

    Article  PubMed  CAS  Google Scholar 

  15. Felius J, Swanson WH, Fellman RL, Lynn JR, Starita RJ (1997) Spatial summation for selected ganglion cell mosaics in patients with glaucoma. In: Wall M, Heijl A (eds) Perimety update 1996/1997. Kugler Publications, Amsterdam, pp 213–221

    Google Scholar 

  16. Fellman RL, Lynn JR, Starita RJ, Swanson WH (1989) Clinical importance of spatial summation in glaucoma. In: Heijl A (ed) Perimety update 1988/1989. Kugler and Ghedini, Amsterdam, pp 313–324

    Google Scholar 

  17. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17

    PubMed  CAS  Google Scholar 

  18. Gowdy PD, Stromeyer CF III, Kronauer RE (1999) Facilitation between the luminance and red-green detection mechanisms: enhancing contrast differences across edges. Vision Res 39:4098–4112

    Article  PubMed  CAS  Google Scholar 

  19. Haas A, Flammer J, Schneider U (1986) Influence of age on the visual fields of normal subjects. Am J Ophthalmol 101:199–203

    PubMed  CAS  Google Scholar 

  20. Hess RF (1990) Rod-mediated vision: role of post-receptoral filters. In: Hess RF, Sharpe LT, Nordby K (eds) Night vision: basic, clinical and applied aspects. Cambridge University Press, Cambridge, pp 3–48

    Google Scholar 

  21. Hess RF, Howell ER (1978) The influence of field size for a periodic stimulus in strabismic amblyopia. Vision Res 18:501–503

    Article  PubMed  CAS  Google Scholar 

  22. Johnson CA, Adams AJ, Lewis RA (1989) Evidence for a neural basis of age-related visual field loss in normal observers. Invest Ophthalmol Vis Sci 30:2056–2064

    PubMed  CAS  Google Scholar 

  23. Kapadia MK, Westheimer G, Gilbert CD (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc Natl Acad Sci U S A 96:12073–12078

    Article  PubMed  CAS  Google Scholar 

  24. Lantham K, Whitaker D, Wild JD (1994) Spatial summation of the light threshold as a function of visual field location and age. Ophthalmic Physiol Opt 14:71–78

    Article  PubMed  Google Scholar 

  25. Mareschal I, Shapley RM (2004) Effects of contrast and size on orientation discrimination. Vision Res 44:57–67

    Article  PubMed  Google Scholar 

  26. Mayer MJ, Spiegler SJ, Ward B, Glucs A, Kim CB (1992) Mid-frequency loss of foveal flicker sensitivity in early stages of age-related maculopathy. Invest Ophthalmol Vis Sci 33:3136–3142

    PubMed  CAS  Google Scholar 

  27. Nameda N, Kawara T, Ohzu H (1989) Human visual spatio-temporal frequency performance as a function of age. Optom Vis Sci 66:760–765

    PubMed  CAS  Google Scholar 

  28. O'Loughlin RK (2004) Visual and systemic correlates in AMD. Unpublished MOptom Dissertation, The University of Melbourne, Australia

  29. Owsley C, Sekuler R (1982) Spatial summation, contrast threshold and aging. Invest Ophthalmol Vis Sci 22:130–133

    PubMed  CAS  Google Scholar 

  30. Owsley C, Sekuler R, Siemsen D (1983) Contrast sensitivity throughout adulthood. Vision Res 23:689–699

    Article  PubMed  CAS  Google Scholar 

  31. Pentland A (1980) Maximum likelihood estimation: the best-PEST. Percept Psychophys 28:377–379

    PubMed  CAS  Google Scholar 

  32. Phipps JA, Dang T, Vingrys AJ, Guymer RH (2004) Flicker perimetry losses in age-related macular degeneration. Invest Ophthalmol Vis Sci 45:3355–3360

    Article  PubMed  Google Scholar 

  33. Phipps JA, Guymer RH, Vingrys AJ (2003) Loss of cone function in age-related maculopathy. Invest Ophthalmol Vis Sci 44:2277–2283

    Article  PubMed  Google Scholar 

  34. Phipps JA, Zele AJ, Dang T, Vingrys AJ (2001) Fast psychophysical procedures for clinical testing. Clin Exp Optom 84:264–269

    Article  PubMed  Google Scholar 

  35. Polat U, Tyler CW (1999) What pattern the eye sees best. Vision Res 39:887–895

    Article  PubMed  CAS  Google Scholar 

  36. Regan D, Whitlock JA, Murray TJ, Beverly KI (1980) Orientation-specific losses of contrast sensitivity in multiple sclerosis. Invest Ophthalmol Vis Sci 19:324–328

    PubMed  CAS  Google Scholar 

  37. Sanyal S, Hawkins RK, Jansen HG, Zeilmaker GH (1992) Compensatory synaptic growth in the rod terminals as a sequel to partial photoreceptor cell loss in the retina of chimaeric mice. Development 114:797–803

    PubMed  CAS  Google Scholar 

  38. Sceniak MP, Ringach DL, Hawken MJ, Shapley R (1999) Contrast's effect on spatial summation by macaque V1 neurons. Nature Neurosci 2:733–739

    Article  PubMed  CAS  Google Scholar 

  39. Sjostrand J, Frisen L (1977) Contrast sensitivity in macular disease. A preliminary report. Acta Ophthalmol (Copenh) 55:507–514

    Article  CAS  Google Scholar 

  40. Swanson WH, Felius J, Birch DG (2000) Effect of stimulus size on static visual fields in patients with retinitis pigmentosa. Ophthalmology 107:1950–1954

    Article  PubMed  CAS  Google Scholar 

  41. Swanson WH, Felius J, Pan F (2004) Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Invest Ophthalmol Vis Sci 45:466–472

    Article  PubMed  Google Scholar 

  42. Taylor HR, West SK (1989) The clinical grading of lens opacities. Aust NZ J Ophthalmol 17:81–88

    Article  CAS  Google Scholar 

  43. Watson AB, Barlow HB, Robson JG (1983) What does the eye see best? Nature 302:419–422

    Article  PubMed  CAS  Google Scholar 

  44. Watson AB, Pelli D (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33:113–120

    PubMed  CAS  Google Scholar 

  45. Watson AB, Turano K (1995) The optimal motion stimulus. Vision Res 35:325–336

    Article  PubMed  CAS  Google Scholar 

  46. Westheimer G (1967) Spatial interaction in human cone vision. J Physiol 190:139–154

    PubMed  CAS  Google Scholar 

  47. Wilson ME (1967) Spatial and temporal summation in impaired regions of the visual field. J Physiol 189:189–208

    PubMed  CAS  Google Scholar 

  48. Wilson ME (1970) Invariant features of spatial summation with changing locus in the visual field. J Physiol 207:611–622

    PubMed  CAS  Google Scholar 

  49. Zele AJ, Vingrys AJ (2000) Flicker adaptation can be explained by probability summation between independent ON- and OFF-processors. Clin Exp Ophthalmol 28:227–229

    Article  CAS  Google Scholar 

  50. Zele AJ, Vingrys AJ (2005) Cathode-ray-tube monitor artefacts in neurophysiology. J Neurosci Meth 141:1–7

    Article  Google Scholar 

  51. Zhang L, Sturr JF (1995) Aging, background luminance, and threshold-duration functions for detection of low spatial frequency sinusoidal gratings. Optom Vis Sci 72:198–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by an Australian Research Council Linkage Project (LP0211474) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Algis J. Vingrys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zele, A.J., O'Loughlin, R.K., Guymer, R.H. et al. Disclosing disease mechanisms with a spatio-temporal summation paradigm. Graefe's Arch Clin Exp Ophthalmo 244, 425–432 (2006). https://doi.org/10.1007/s00417-005-0121-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0121-5

Keywords

Navigation